8 12

From Knot Atlas
Revision as of 20:49, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


8 11.gif

8_11

8 13.gif

8_13

8 12.gif Visit 8 12's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 12's page at Knotilus!

Visit 8 12's page at the original Knot Atlas!

8 12 Quick Notes




In symmetric decorative form

Knot presentations

Planar diagram presentation X4251 X10,8,11,7 X8394 X2,9,3,10 X14,6,15,5 X16,11,1,12 X12,15,13,16 X6,14,7,13
Gauss code 1, -4, 3, -1, 5, -8, 2, -3, 4, -2, 6, -7, 8, -5, 7, -6
Dowker-Thistlethwaite code 4 8 14 10 2 16 6 12
Conway Notation [2222]

Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-5][-5]
Hyperbolic Volume 8.93586
A-Polynomial See Data:8 12/A-polynomial

[edit Notes for 8 12's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 12's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 29, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-3, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 12. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-4-3-2-101234χ
9        11
7       1 -1
5      31 2
3     21  -1
1    33   0
-1   33    0
-3  12     -1
-5 13      2
-7 1       -1
-91        1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 12]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 12]]
Out[3]=  
PD[X[4, 2, 5, 1], X[10, 8, 11, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], 
  X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 15, 13, 16], X[6, 14, 7, 13]]
In[4]:=
GaussCode[Knot[8, 12]]
Out[4]=  
GaussCode[1, -4, 3, -1, 5, -8, 2, -3, 4, -2, 6, -7, 8, -5, 7, -6]
In[5]:=
BR[Knot[8, 12]]
Out[5]=  
BR[5, {-1, 2, -1, -3, 2, 4, -3, 4}]
In[6]:=
alex = Alexander[Knot[8, 12]][t]
Out[6]=  
      -2   7          2

13 + t - - - 7 t + t

t
In[7]:=
Conway[Knot[8, 12]][z]
Out[7]=  
       2    4
1 - 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 12]}
In[9]:=
{KnotDet[Knot[8, 12]], KnotSignature[Knot[8, 12]]}
Out[9]=  
{29, 0}
In[10]:=
J=Jones[Knot[8, 12]][q]
Out[10]=  
     -4   2    4    5            2      3    4

5 + q - -- + -- - - - 5 q + 4 q - 2 q + q

          3    2   q
q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 12]}
In[12]:=
A2Invariant[Knot[8, 12]][q]
Out[12]=  
      -14    -12    -10    -8    -4    -2    2    4    8    10    12

-1 + q + q - q + q - q + q + q - q + q - q + q +

  14
q
In[13]:=
Kauffman[Knot[8, 12]][a, z]
Out[13]=  
                                         2      2
    -4    -2    2    4   z     3     2 z    2 z       2  2      4  2

1 + a + a + a + a + -- + a z - ---- - ---- - 2 a z - 2 a z -

                          3            4      2
                         a            a      a

    3      3                              4    4
 3 z    3 z         3      3  3      4   z    z     2  4    4  4
 ---- - ---- - 3 a z  - 3 a  z  - 4 z  + -- - -- - a  z  + a  z  + 
   3     a                                4    2
  a                                      a    a

    5      5                                6              7
 2 z    2 z         5      3  5      6   2 z       2  6   z       7
 ---- + ---- + 2 a z  + 2 a  z  + 4 z  + ---- + 2 a  z  + -- + a z
   3     a                                 2              a
a a
In[14]:=
{Vassiliev[2][Knot[8, 12]], Vassiliev[3][Knot[8, 12]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[8, 12]][q, t]
Out[15]=  
3           1       1       1       3       1      2      3

- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t + q 9 4 7 3 5 3 5 2 3 2 3 q t

         q  t    q  t    q  t    q  t    q  t    q  t

    3      3  2      5  2    5  3    7  3    9  4
2 q t + q t + 3 q t + q t + q t + q t