10 46
|
|
Visit 10 46's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 46's page at Knotilus! Visit 10 46's page at the original Knot Atlas! |
10_46 is also known as the pretzel knot P(5,3,2). |
Knot presentations
Planar diagram presentation | X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X18,12,19,11 X20,14,1,13 X10,18,11,17 X12,20,13,19 |
Gauss code | 1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, -7, 10, -8 |
Dowker-Thistlethwaite code | 6 8 14 2 16 18 20 4 10 12 |
Conway Notation | [5,3,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 46"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 31, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (0, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 10 46. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | χ | |||||||||
23 | 1 | 1 | |||||||||||||||||||
21 | 1 | -1 | |||||||||||||||||||
19 | 2 | 1 | 1 | ||||||||||||||||||
17 | 2 | 1 | -1 | ||||||||||||||||||
15 | 2 | 2 | 0 | ||||||||||||||||||
13 | 3 | 2 | -1 | ||||||||||||||||||
11 | 1 | 2 | -1 | ||||||||||||||||||
9 | 2 | 3 | 1 | ||||||||||||||||||
7 | 1 | 1 | 0 | ||||||||||||||||||
5 | 1 | 3 | 2 | ||||||||||||||||||
3 | 0 | ||||||||||||||||||||
1 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 46]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 46]] |
Out[3]= | PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9],X[14, 5, 15, 6], X[4, 15, 5, 16], X[18, 12, 19, 11],X[20, 14, 1, 13], X[10, 18, 11, 17], X[12, 20, 13, 19]] |
In[4]:= | GaussCode[Knot[10, 46]] |
Out[4]= | GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, -7, 10, -8] |
In[5]:= | BR[Knot[10, 46]] |
Out[5]= | BR[3, {1, 1, 1, 1, 1, -2, 1, 1, 1, -2}] |
In[6]:= | alex = Alexander[Knot[10, 46]][t] |
Out[6]= | -4 3 4 5 2 3 4 |
In[7]:= | Conway[Knot[10, 46]][z] |
Out[7]= | 4 6 8 1 - 6 z - 5 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 46], Knot[11, NonAlternating, 60]} |
In[9]:= | {KnotDet[Knot[10, 46]], KnotSignature[Knot[10, 46]]} |
Out[9]= | {31, 6} |
In[10]:= | J=Jones[Knot[10, 46]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 10 11 q - q + 3 q - 3 q + 4 q - 5 q + 4 q - 4 q + 3 q - 2 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 46]} |
In[12]:= | A2Invariant[Knot[10, 46]][q] |
Out[12]= | 4 6 8 10 12 14 16 18 20 22 28 |
In[13]:= | Kauffman[Knot[10, 46]][a, z] |
Out[13]= | 2 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 46]], Vassiliev[3][Knot[10, 46]]} |
Out[14]= | {0, -4} |
In[15]:= | Kh[Knot[10, 46]][q, t] |
Out[15]= | 55 7 q q 7 9 9 2 11 2 11 3 |