9 7

From Knot Atlas
Revision as of 20:52, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 6.gif

9_6

9 8.gif

9_8

9 7.gif Visit 9 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 7's page at Knotilus!

Visit 9 7's page at the original Knot Atlas!

9 7 Quick Notes


9 7 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,16,6,17 X7,18,8,1 X17,6,18,7 X9,14,10,15 X13,10,14,11 X15,8,16,9 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4
Dowker-Thistlethwaite code 4 12 16 18 14 2 10 8 6
Conway Notation [342]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 8.01486
A-Polynomial See Data:9 7/A-polynomial

[edit Notes for 9 7's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 7's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 29, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (5, -12)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        110
-7       2  2
-9      21  -1
-11     32   1
-13    22    0
-15   23     -1
-17  12      1
-19 12       -1
-21 1        1
-231         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 7]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 7]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 16, 6, 17], X[7, 18, 8, 1], 
 X[17, 6, 18, 7], X[9, 14, 10, 15], X[13, 10, 14, 11], 

X[15, 8, 16, 9], X[11, 2, 12, 3]]
In[4]:=
GaussCode[Knot[9, 7]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4]
In[5]:=
BR[Knot[9, 7]]
Out[5]=  
BR[4, {-1, -1, -1, -1, -2, 1, -2, -3, 2, -3, -3}]
In[6]:=
alex = Alexander[Knot[9, 7]][t]
Out[6]=  
    3    7            2

9 + -- - - - 7 t + 3 t

    2   t
t
In[7]:=
Conway[Knot[9, 7]][z]
Out[7]=  
       2      4
1 + 5 z  + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 7]}
In[9]:=
{KnotDet[Knot[9, 7]], KnotSignature[Knot[9, 7]]}
Out[9]=  
{29, -4}
In[10]:=
J=Jones[Knot[9, 7]][q]
Out[10]=  
  -11    2    3    4    5    5    4    3     -3    -2

-q + --- - -- + -- - -- + -- - -- + -- - q + q

        10    9    8    7    6    5    4
q q q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 7]}
In[12]:=
A2Invariant[Knot[9, 7]][q]
Out[12]=  
  -34    -28    -26    -18    -16    -12    2     -6

-q - q + q - q + q + q + --- + q

                                           10
q
In[13]:=
Kauffman[Knot[9, 7]][a, z]
Out[13]=  
   4    6    8    10    5      7        9        11      13

2 a + a + a + a - a z - a z - 3 a z - 2 a z + a z -

    4  2      6  2      8  2      10  2      12  2    5  3      7  3
 3 a  z  - 2 a  z  - 4 a  z  - 2 a   z  + 3 a   z  - a  z  + 2 a  z  + 

     9  3      11  3      13  3    4  4      8  4      10  4
 11 a  z  + 5 a   z  - 3 a   z  + a  z  + 7 a  z  + 2 a   z  - 

    12  4    5  5    7  5      9  5      11  5    13  5    6  6
 6 a   z  + a  z  - a  z  - 9 a  z  - 6 a   z  + a   z  + a  z  - 

    8  6      10  6      12  6    7  7      9  7      11  7    8  8
 3 a  z  - 2 a   z  + 2 a   z  + a  z  + 3 a  z  + 2 a   z  + a  z  + 

  10  8
a z
In[14]:=
{Vassiliev[2][Knot[9, 7]], Vassiliev[3][Knot[9, 7]]}
Out[14]=  
{0, -12}
In[15]:=
Kh[Knot[9, 7]][q, t]
Out[15]=  
 -5    -3     1        1        1        2        1        2

q + q + ------ + ------ + ------ + ------ + ------ + ------ +

            23  9    21  8    19  8    19  7    17  7    17  6
           q   t    q   t    q   t    q   t    q   t    q   t

   2        3        2        2        3        2        2       1
 ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
  15  6    15  5    13  5    13  4    11  4    11  3    9  3    9  2
 q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t

   2      1
 ----- + ----
  7  2    5
q t q t