9 38

From Knot Atlas
Revision as of 20:52, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 37.gif

9_37

9 39.gif

9_39

9 38.gif Visit 9 38's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 38's page at Knotilus!

Visit 9 38's page at the original Knot Atlas!

9 38 Quick Notes


9 38 Further Notes and Views

Knot presentations

Planar diagram presentation X1627 X5,14,6,15 X7,18,8,1 X15,8,16,9 X3,10,4,11 X9,4,10,5 X17,12,18,13 X11,16,12,17 X13,2,14,3
Gauss code -1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3
Dowker-Thistlethwaite code 6 10 14 18 4 16 2 8 12
Conway Notation [.2.2.2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 12.9329
A-Polynomial See Data:9 38/A-polynomial

[edit Notes for 9 38's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 38's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 57, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (6, -14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 38. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        31-2
-7       4  4
-9      43  -1
-11     64   2
-13    44    0
-15   46     -2
-17  24      2
-19 14       -3
-21 2        2
-231         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 38]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 38]]
Out[3]=  
PD[X[1, 6, 2, 7], X[5, 14, 6, 15], X[7, 18, 8, 1], X[15, 8, 16, 9], 
 X[3, 10, 4, 11], X[9, 4, 10, 5], X[17, 12, 18, 13], 

X[11, 16, 12, 17], X[13, 2, 14, 3]]
In[4]:=
GaussCode[Knot[9, 38]]
Out[4]=  
GaussCode[-1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3]
In[5]:=
BR[Knot[9, 38]]
Out[5]=  
BR[4, {-1, -1, -2, -2, 3, -2, 1, -2, -3, -3, -2}]
In[6]:=
alex = Alexander[Knot[9, 38]][t]
Out[6]=  
     5    14             2

19 + -- - -- - 14 t + 5 t

     2   t
t
In[7]:=
Conway[Knot[9, 38]][z]
Out[7]=  
       2      4
1 + 6 z  + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 38], Knot[10, 63]}
In[9]:=
{KnotDet[Knot[9, 38]], KnotSignature[Knot[9, 38]]}
Out[9]=  
{57, -4}
In[10]:=
J=Jones[Knot[9, 38]][q]
Out[10]=  
  -11    3    6    8    10   10   8    7    3     -2

-q + --- - -- + -- - -- + -- - -- + -- - -- + q

        10    9    8    7    6    5    4    3
q q q q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 38]}
In[12]:=
A2Invariant[Knot[9, 38]][q]
Out[12]=  
  -34    -32    -30    3     2     -22    2     4     -12    2    2

-q + q + q - --- - --- - q + --- + --- + q + --- - -- +

                      28    24           20    16           10    8
                     q     q            q     q            q     q

  -6
q
In[13]:=
Kauffman[Knot[9, 38]][a, z]
Out[13]=  
    6      8      7      9      11      13      4  2      6  2

-4 a - 3 a + 3 a z + a z - a z + a z - a z + 9 a z +

     8  2      10  2      12  2      5  3      7  3      9  3
 10 a  z  + 3 a   z  + 3 a   z  - 2 a  z  - 2 a  z  + 5 a  z  + 

    11  3      13  3    4  4       6  4       8  4       10  4
 3 a   z  - 2 a   z  + a  z  - 10 a  z  - 15 a  z  - 10 a   z  - 

    12  4      5  5      7  5       9  5      11  5    13  5
 6 a   z  + 3 a  z  - 4 a  z  - 15 a  z  - 7 a   z  + a   z  + 

    6  6      8  6      10  6      12  6      7  7      9  7
 6 a  z  + 6 a  z  + 3 a   z  + 3 a   z  + 5 a  z  + 9 a  z  + 

    11  7      8  8      10  8
4 a z + 2 a z + 2 a z
In[14]:=
{Vassiliev[2][Knot[9, 38]], Vassiliev[3][Knot[9, 38]]}
Out[14]=  
{0, -14}
In[15]:=
Kh[Knot[9, 38]][q, t]
Out[15]=  
 -5    -3     1        2        1        4        2        4

q + q + ------ + ------ + ------ + ------ + ------ + ------ +

            23  9    21  8    19  8    19  7    17  7    17  6
           q   t    q   t    q   t    q   t    q   t    q   t

   4        6        4        4        6        4        4       3
 ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
  15  6    15  5    13  5    13  4    11  4    11  3    9  3    9  2
 q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t

   4      3
 ----- + ----
  7  2    5
q t q t