T(15,2)
|
|
|
|
Visit [[[:Template:KnotilusURL]] T(15,2)'s page] at Knotilus!
Visit T(15,2)'s page at the original Knot Atlas! |
T(15,2) Further Notes and Views
Knot presentations
| Planar diagram presentation | X9,25,10,24 X25,11,26,10 X11,27,12,26 X27,13,28,12 X13,29,14,28 X29,15,30,14 X15,1,16,30 X1,17,2,16 X17,3,18,2 X3,19,4,18 X19,5,20,4 X5,21,6,20 X21,7,22,6 X7,23,8,22 X23,9,24,8 |
| Gauss code | -8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7 |
| Dowker-Thistlethwaite code | 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14 |
| Conway Notation | Data:T(15,2)/Conway Notation |
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^7-t^6+t^5-t^4+t^3-t^2+t-1+ t^{-1} - t^{-2} + t^{-3} - t^{-4} + t^{-5} - t^{-6} + t^{-7} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^{14}+13 z^{12}+66 z^{10}+165 z^8+210 z^6+126 z^4+28 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 15, 14 } |
| Jones polynomial | [math]\displaystyle{ -q^{22}+q^{21}-q^{20}+q^{19}-q^{18}+q^{17}-q^{16}+q^{15}-q^{14}+q^{13}-q^{12}+q^{11}-q^{10}+q^9+q^7 }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^{14} a^{-14} +14 z^{12} a^{-14} -z^{12} a^{-16} +78 z^{10} a^{-14} -12 z^{10} a^{-16} +220 z^8 a^{-14} -55 z^8 a^{-16} +330 z^6 a^{-14} -120 z^6 a^{-16} +252 z^4 a^{-14} -126 z^4 a^{-16} +84 z^2 a^{-14} -56 z^2 a^{-16} +8 a^{-14} -7 a^{-16} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{14} a^{-14} +z^{14} a^{-16} +z^{13} a^{-15} +z^{13} a^{-17} -14 z^{12} a^{-14} -13 z^{12} a^{-16} +z^{12} a^{-18} -12 z^{11} a^{-15} -11 z^{11} a^{-17} +z^{11} a^{-19} +78 z^{10} a^{-14} +67 z^{10} a^{-16} -10 z^{10} a^{-18} +z^{10} a^{-20} +55 z^9 a^{-15} +45 z^9 a^{-17} -9 z^9 a^{-19} +z^9 a^{-21} -220 z^8 a^{-14} -175 z^8 a^{-16} +36 z^8 a^{-18} -8 z^8 a^{-20} +z^8 a^{-22} -120 z^7 a^{-15} -84 z^7 a^{-17} +28 z^7 a^{-19} -7 z^7 a^{-21} +z^7 a^{-23} +330 z^6 a^{-14} +246 z^6 a^{-16} -56 z^6 a^{-18} +21 z^6 a^{-20} -6 z^6 a^{-22} +z^6 a^{-24} +126 z^5 a^{-15} +70 z^5 a^{-17} -35 z^5 a^{-19} +15 z^5 a^{-21} -5 z^5 a^{-23} +z^5 a^{-25} -252 z^4 a^{-14} -182 z^4 a^{-16} +35 z^4 a^{-18} -20 z^4 a^{-20} +10 z^4 a^{-22} -4 z^4 a^{-24} +z^4 a^{-26} -56 z^3 a^{-15} -21 z^3 a^{-17} +15 z^3 a^{-19} -10 z^3 a^{-21} +6 z^3 a^{-23} -3 z^3 a^{-25} +z^3 a^{-27} +84 z^2 a^{-14} +63 z^2 a^{-16} -6 z^2 a^{-18} +5 z^2 a^{-20} -4 z^2 a^{-22} +3 z^2 a^{-24} -2 z^2 a^{-26} +z^2 a^{-28} +7 z a^{-15} +z a^{-17} -z a^{-19} +z a^{-21} -z a^{-23} +z a^{-25} -z a^{-27} +z a^{-29} -8 a^{-14} -7 a^{-16} }[/math] |
| The A2 invariant | Data:T(15,2)/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:T(15,2)/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(15,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^7-t^6+t^5-t^4+t^3-t^2+t-1+ t^{-1} - t^{-2} + t^{-3} - t^{-4} + t^{-5} - t^{-6} + t^{-7} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^{14}+13 z^{12}+66 z^{10}+165 z^8+210 z^6+126 z^4+28 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 15, 14 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^{22}+q^{21}-q^{20}+q^{19}-q^{18}+q^{17}-q^{16}+q^{15}-q^{14}+q^{13}-q^{12}+q^{11}-q^{10}+q^9+q^7 }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^{14} a^{-14} +14 z^{12} a^{-14} -z^{12} a^{-16} +78 z^{10} a^{-14} -12 z^{10} a^{-16} +220 z^8 a^{-14} -55 z^8 a^{-16} +330 z^6 a^{-14} -120 z^6 a^{-16} +252 z^4 a^{-14} -126 z^4 a^{-16} +84 z^2 a^{-14} -56 z^2 a^{-16} +8 a^{-14} -7 a^{-16} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{14} a^{-14} +z^{14} a^{-16} +z^{13} a^{-15} +z^{13} a^{-17} -14 z^{12} a^{-14} -13 z^{12} a^{-16} +z^{12} a^{-18} -12 z^{11} a^{-15} -11 z^{11} a^{-17} +z^{11} a^{-19} +78 z^{10} a^{-14} +67 z^{10} a^{-16} -10 z^{10} a^{-18} +z^{10} a^{-20} +55 z^9 a^{-15} +45 z^9 a^{-17} -9 z^9 a^{-19} +z^9 a^{-21} -220 z^8 a^{-14} -175 z^8 a^{-16} +36 z^8 a^{-18} -8 z^8 a^{-20} +z^8 a^{-22} -120 z^7 a^{-15} -84 z^7 a^{-17} +28 z^7 a^{-19} -7 z^7 a^{-21} +z^7 a^{-23} +330 z^6 a^{-14} +246 z^6 a^{-16} -56 z^6 a^{-18} +21 z^6 a^{-20} -6 z^6 a^{-22} +z^6 a^{-24} +126 z^5 a^{-15} +70 z^5 a^{-17} -35 z^5 a^{-19} +15 z^5 a^{-21} -5 z^5 a^{-23} +z^5 a^{-25} -252 z^4 a^{-14} -182 z^4 a^{-16} +35 z^4 a^{-18} -20 z^4 a^{-20} +10 z^4 a^{-22} -4 z^4 a^{-24} +z^4 a^{-26} -56 z^3 a^{-15} -21 z^3 a^{-17} +15 z^3 a^{-19} -10 z^3 a^{-21} +6 z^3 a^{-23} -3 z^3 a^{-25} +z^3 a^{-27} +84 z^2 a^{-14} +63 z^2 a^{-16} -6 z^2 a^{-18} +5 z^2 a^{-20} -4 z^2 a^{-22} +3 z^2 a^{-24} -2 z^2 a^{-26} +z^2 a^{-28} +7 z a^{-15} +z a^{-17} -z a^{-19} +z a^{-21} -z a^{-23} +z a^{-25} -z a^{-27} +z a^{-29} -8 a^{-14} -7 a^{-16} }[/math] |
Vassiliev invariants
| V2 and V3: | (28, 140) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]14 is the signature of T(15,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | χ | |||||||||
| 45 | 1 | -1 | ||||||||||||||||||||||||
| 43 | 0 | |||||||||||||||||||||||||
| 41 | 1 | 1 | 0 | |||||||||||||||||||||||
| 39 | 0 | |||||||||||||||||||||||||
| 37 | 1 | 1 | 0 | |||||||||||||||||||||||
| 35 | 0 | |||||||||||||||||||||||||
| 33 | 1 | 1 | 0 | |||||||||||||||||||||||
| 31 | 0 | |||||||||||||||||||||||||
| 29 | 1 | 1 | 0 | |||||||||||||||||||||||
| 27 | 0 | |||||||||||||||||||||||||
| 25 | 1 | 1 | 0 | |||||||||||||||||||||||
| 23 | 0 | |||||||||||||||||||||||||
| 21 | 1 | 1 | 0 | |||||||||||||||||||||||
| 19 | 0 | |||||||||||||||||||||||||
| 17 | 1 | 1 | ||||||||||||||||||||||||
| 15 | 1 | 1 | ||||||||||||||||||||||||
| 13 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[15, 2]] |
Out[2]= | 15 |
In[3]:= | PD[TorusKnot[15, 2]] |
Out[3]= | PD[X[9, 25, 10, 24], X[25, 11, 26, 10], X[11, 27, 12, 26],X[27, 13, 28, 12], X[13, 29, 14, 28], X[29, 15, 30, 14], X[15, 1, 16, 30], X[1, 17, 2, 16], X[17, 3, 18, 2], X[3, 19, 4, 18], X[19, 5, 20, 4], X[5, 21, 6, 20], X[21, 7, 22, 6], X[7, 23, 8, 22],X[23, 9, 24, 8]] |
In[4]:= | GaussCode[TorusKnot[15, 2]] |
Out[4]= | GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7] |
In[5]:= | BR[TorusKnot[15, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[15, 2]][t] |
Out[6]= | -7 -6 -5 -4 -3 -2 1 2 3 4 5 |
In[7]:= | Conway[TorusKnot[15, 2]][z] |
Out[7]= | 2 4 6 8 10 12 14 1 + 28 z + 126 z + 210 z + 165 z + 66 z + 13 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[15, 2]], KnotSignature[TorusKnot[15, 2]]} |
Out[9]= | {15, 14} |
In[10]:= | J=Jones[TorusKnot[15, 2]][q] |
Out[10]= | 7 9 10 11 12 13 14 15 16 17 18 19 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[15, 2]][q] |
Out[12]= | 26 28 30 32 34 58 60 62 q + q + 2 q + q + q - q - q - q |
In[13]:= | Kauffman[TorusKnot[15, 2]][a, z] |
Out[13]= | 2 |
In[14]:= | {Vassiliev[2][TorusKnot[15, 2]], Vassiliev[3][TorusKnot[15, 2]]} |
Out[14]= | {0, 140} |
In[15]:= | Kh[TorusKnot[15, 2]][q, t] |
Out[15]= | 13 15 17 2 21 3 21 4 25 5 25 6 29 7 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)


