T(15,2)
|
|
Visit [[[:Template:KnotilusURL]] T(15,2)'s page] at Knotilus!
Visit T(15,2)'s page at the original Knot Atlas! |
T(15,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X9,25,10,24 X25,11,26,10 X11,27,12,26 X27,13,28,12 X13,29,14,28 X29,15,30,14 X15,1,16,30 X1,17,2,16 X17,3,18,2 X3,19,4,18 X19,5,20,4 X5,21,6,20 X21,7,22,6 X7,23,8,22 X23,9,24,8 |
Gauss code | -8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7 |
Dowker-Thistlethwaite code | 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14 |
Conway Notation | Data:T(15,2)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(15,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 15, 14 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (28, 140) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 14 is the signature of T(15,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | χ | |||||||||
45 | 1 | -1 | ||||||||||||||||||||||||
43 | 0 | |||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||
39 | 0 | |||||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||
35 | 0 | |||||||||||||||||||||||||
33 | 1 | 1 | 0 | |||||||||||||||||||||||
31 | 0 | |||||||||||||||||||||||||
29 | 1 | 1 | 0 | |||||||||||||||||||||||
27 | 0 | |||||||||||||||||||||||||
25 | 1 | 1 | 0 | |||||||||||||||||||||||
23 | 0 | |||||||||||||||||||||||||
21 | 1 | 1 | 0 | |||||||||||||||||||||||
19 | 0 | |||||||||||||||||||||||||
17 | 1 | 1 | ||||||||||||||||||||||||
15 | 1 | 1 | ||||||||||||||||||||||||
13 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[15, 2]] |
Out[2]= | 15 |
In[3]:= | PD[TorusKnot[15, 2]] |
Out[3]= | PD[X[9, 25, 10, 24], X[25, 11, 26, 10], X[11, 27, 12, 26],X[27, 13, 28, 12], X[13, 29, 14, 28], X[29, 15, 30, 14], X[15, 1, 16, 30], X[1, 17, 2, 16], X[17, 3, 18, 2], X[3, 19, 4, 18], X[19, 5, 20, 4], X[5, 21, 6, 20], X[21, 7, 22, 6], X[7, 23, 8, 22],X[23, 9, 24, 8]] |
In[4]:= | GaussCode[TorusKnot[15, 2]] |
Out[4]= | GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7] |
In[5]:= | BR[TorusKnot[15, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[15, 2]][t] |
Out[6]= | -7 -6 -5 -4 -3 -2 1 2 3 4 5 |
In[7]:= | Conway[TorusKnot[15, 2]][z] |
Out[7]= | 2 4 6 8 10 12 14 1 + 28 z + 126 z + 210 z + 165 z + 66 z + 13 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[15, 2]], KnotSignature[TorusKnot[15, 2]]} |
Out[9]= | {15, 14} |
In[10]:= | J=Jones[TorusKnot[15, 2]][q] |
Out[10]= | 7 9 10 11 12 13 14 15 16 17 18 19 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[15, 2]][q] |
Out[12]= | 26 28 30 32 34 58 60 62 q + q + 2 q + q + q - q - q - q |
In[13]:= | Kauffman[TorusKnot[15, 2]][a, z] |
Out[13]= | 2 |
In[14]:= | {Vassiliev[2][TorusKnot[15, 2]], Vassiliev[3][TorusKnot[15, 2]]} |
Out[14]= | {0, 140} |
In[15]:= | Kh[TorusKnot[15, 2]][q, t] |
Out[15]= | 13 15 17 2 21 3 21 4 25 5 25 6 29 7 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)