9 24
| 
 | 
 | 
 
 | 
Visit 9 24's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!)
 Visit 9 24's page at Knotilus! Visit 9 24's page at the original Knot Atlas!  | 
Knot presentations
| Planar diagram presentation | X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283 | 
| Gauss code | -1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5 | 
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 6 12 10 | 
| Conway Notation | [3,21,2+] | 
Three dimensional invariants
  | 
Four dimensional invariants
  | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["9 24"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 45, 0 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
Vassiliev invariants
| V2 and V3: | (1, -2) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 24. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
In[1]:=  | 
<< KnotTheory`  | 
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...  | |
In[2]:=  | Crossings[Knot[9, 24]]  | 
Out[2]=  | 9  | 
In[3]:=  | PD[Knot[9, 24]]  | 
Out[3]=  | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16],X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12],X[13, 6, 14, 7], X[7, 2, 8, 3]]  | 
In[4]:=  | GaussCode[Knot[9, 24]]  | 
Out[4]=  | GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]  | 
In[5]:=  | BR[Knot[9, 24]]  | 
Out[5]=  | BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}] | 
In[6]:=  | alex = Alexander[Knot[9, 24]][t]  | 
Out[6]=  | -3 5 10 2 3  | 
In[7]:=  | Conway[Knot[9, 24]][z]  | 
Out[7]=  | 2 4 6 1 + z - z - z  | 
In[8]:=  | Select[AllKnots[], (alex === Alexander[#][t])&]  | 
Out[8]=  | {Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85], 
  Knot[11, NonAlternating, 164]} | 
In[9]:=  | {KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]} | 
Out[9]=  | {45, 0} | 
In[10]:=  | J=Jones[Knot[9, 24]][q]  | 
Out[10]=  | -5 2 4 7 7 2 3 4  | 
In[11]:=  | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]  | 
Out[11]=  | {Knot[9, 24]} | 
In[12]:=  | A2Invariant[Knot[9, 24]][q]  | 
Out[12]=  | -16 -14 -10 3 2 -4 2 2 4 8 10  | 
In[13]:=  | Kauffman[Knot[9, 24]][a, z]  | 
Out[13]=  | -2 2 4 z 2 z 3 5 2  | 
In[14]:=  | {Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]} | 
Out[14]=  | {0, -2} | 
In[15]:=  | Kh[Knot[9, 24]][q, t]  | 
Out[15]=  | 5 1 1 1 3 1 4 3  | 


