10 97

From Knot Atlas
Revision as of 20:06, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

10 96.gif

10_96

10 98.gif

10_98

10 97.gif Visit 10 97's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 97's page at Knotilus!

Visit 10 97's page at the original Knot Atlas!

10 97 Quick Notes


10 97 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X12,6,13,5 X8394 X2,9,3,10 X16,12,17,11 X10,18,11,17 X18,8,19,7 X20,14,1,13 X14,20,15,19 X6,16,7,15
Gauss code 1, -4, 3, -1, 2, -10, 7, -3, 4, -6, 5, -2, 8, -9, 10, -5, 6, -7, 9, -8
Dowker-Thistlethwaite code 4 8 12 18 2 16 20 6 10 14
Conway Notation [.2.210.2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-1][-11]
Hyperbolic Volume 14.8527
A-Polynomial See Data:10 97/A-polynomial

[edit Notes for 10 97's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
Topological 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
Concordance genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
Rasmussen s-Invariant -2

[edit Notes for 10 97's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 z^4+2 z^2+1}
2nd Alexander ideal (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
Determinant and Signature { 87, 2 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-4 q^8+7 q^7-11 q^6+14 q^5-14 q^4+14 q^3-11 q^2+7 q-3+ q^{-1} }
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -3 z^4 a^{-4} -z^4 a^{-6} +2 z^2 a^{-2} -4 z^2 a^{-4} +2 z^2 a^{-6} +z^2 a^{-8} +z^2+2 a^{-2} -2 a^{-4} +2 a^{-6} - a^{-8} }
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (2, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 97. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345678χ
19          11
17         3 -3
15        41 3
13       73  -4
11      74   3
9     77    0
7    77     0
5   47      3
3  37       -4
1 15        4
-1 2         -2
-31          1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=6} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=7} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[10, 97]]
Out[2]=  
10
In[3]:=
PD[Knot[10, 97]]
Out[3]=  
PD[X[4, 2, 5, 1], X[12, 6, 13, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], 
 X[16, 12, 17, 11], X[10, 18, 11, 17], X[18, 8, 19, 7], 

X[20, 14, 1, 13], X[14, 20, 15, 19], X[6, 16, 7, 15]]
In[4]:=
GaussCode[Knot[10, 97]]
Out[4]=  
GaussCode[1, -4, 3, -1, 2, -10, 7, -3, 4, -6, 5, -2, 8, -9, 10, -5, 6, 
  -7, 9, -8]
In[5]:=
BR[Knot[10, 97]]
Out[5]=  
BR[5, {1, 1, 2, -1, 2, 1, -3, 2, -1, 2, 3, -4, 3, -4}]
In[6]:=
alex = Alexander[Knot[10, 97]][t]
Out[6]=  
      5    22             2

-33 - -- + -- + 22 t - 5 t

      2   t
t
In[7]:=
Conway[Knot[10, 97]][z]
Out[7]=  
       2      4
1 + 2 z  - 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[10, 97]}
In[9]:=
{KnotDet[Knot[10, 97]], KnotSignature[Knot[10, 97]]}
Out[9]=  
{87, 2}
In[10]:=
J=Jones[Knot[10, 97]][q]
Out[10]=  
     1             2       3       4       5       6      7      8    9

-3 + - + 7 q - 11 q + 14 q - 14 q + 14 q - 11 q + 7 q - 4 q + q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[10, 97]}
In[12]:=
A2Invariant[Knot[10, 97]][q]
Out[12]=  
      -4    -2      2      4    6      8      10      12      14

-1 + q - q + 4 q - 2 q + q + 2 q - 2 q + 2 q - 2 q +

    16    18      20      22      24      26    28
2 q + q - 2 q + 3 q - 2 q - 2 q + q
In[13]:=
Kauffman[Knot[10, 97]][a, z]
Out[13]=  
                                              2     2      2       2
 -8   2    2    2    4 z   6 z   2 z    2   z     z    3 z    10 z

-a - -- - -- - -- - --- - --- - --- - z + --- + -- + ---- + ----- +

       6    4    2    7     5     3          10    8     6      4
      a    a    a    a     a     a          a     a     a      a

    2      3       3       3       3      3           4      4
 6 z    8 z    20 z    24 z    10 z    2 z     4   2 z    4 z
 ---- + ---- + ----- + ----- + ----- - ---- + z  - ---- + ---- + 
   2      9      7       5       3      a           10      8
  a      a      a       a       a                  a       a

    4      4      4       5       5       5       5      5    6
 5 z    9 z    7 z    11 z    28 z    32 z    12 z    3 z    z
 ---- - ---- - ---- - ----- - ----- - ----- - ----- + ---- + --- - 
   6      4      2      9       7       5       3      a      10
  a      a      a      a       a       a       a             a

     6       6      6      6      7      7       7      7      8
 11 z    21 z    3 z    6 z    4 z    7 z    11 z    8 z    5 z
 ----- - ----- - ---- + ---- + ---- + ---- + ----- + ---- + ---- + 
   8       6       4      2      9      7      5       3      8
  a       a       a      a      a      a      a       a      a

     8      8      9      9
 11 z    6 z    2 z    2 z
 ----- + ---- + ---- + ----
   6       4      7      5
a a a a
In[14]:=
{Vassiliev[2][Knot[10, 97]], Vassiliev[3][Knot[10, 97]]}
Out[14]=  
{0, 4}
In[15]:=
Kh[Knot[10, 97]][q, t]
Out[15]=  
         3     1      2    q      3        5        5  2      7  2

5 q + 3 q + ----- + --- + - + 7 q t + 4 q t + 7 q t + 7 q t +

             3  2   q t   t
            q  t

    7  3      9  3      9  4      11  4      11  5      13  5
 7 q  t  + 7 q  t  + 7 q  t  + 7 q   t  + 4 q   t  + 7 q   t  + 

    13  6      15  6    15  7      17  7    19  8
3 q t + 4 q t + q t + 3 q t + q t