In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[7, 7]] |
Out[2]= | 7 |
In[3]:= | PD[Knot[7, 7]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[11, 14, 12, 1], X[7, 13, 8, 12], X[13, 7, 14, 6]] |
In[4]:= | GaussCode[Knot[7, 7]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 2, -5, 6, -7, 5] |
In[5]:= | BR[Knot[7, 7]] |
Out[5]= | BR[4, {1, -2, 1, -2, 3, -2, 3}] |
In[6]:= | alex = Alexander[Knot[7, 7]][t] |
Out[6]= | -2 5 2
9 + t - - - 5 t + t
t |
In[7]:= | Conway[Knot[7, 7]][z] |
Out[7]= | 2 4
1 - z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[7, 7], Knot[11, NonAlternating, 28]} |
In[9]:= | {KnotDet[Knot[7, 7]], KnotSignature[Knot[7, 7]]} |
Out[9]= | {21, 0} |
In[10]:= | J=Jones[Knot[7, 7]][q] |
Out[10]= | -3 3 3 2 3 4
4 - q + -- - - - 4 q + 3 q - 2 q + q
2 q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[7, 7]} |
In[12]:= | A2Invariant[Knot[7, 7]][q] |
Out[12]= | -10 -8 -6 2 2 4 6 10 12 14
-q + q + q + -- + q - q - q - q + q + q
2
q |
In[13]:= | Kauffman[Knot[7, 7]][a, z] |
Out[13]= | 2 2 3
-4 2 2 z 3 z 2 2 z 6 z 2 2 4 z
2 + a + -- + --- + --- + a z - 7 z - ---- - ---- - 3 a z - ---- -
2 3 a 4 2 3
a a a a a
3 4 4 5 5
8 z 3 3 3 4 z 2 z 2 4 2 z 5 z
---- - 3 a z + a z + 4 z + -- + ---- + 3 a z + ---- + ---- +
a 4 2 3 a
a a a
6
5 6 z
3 a z + z + --
2
a |
In[14]:= | {Vassiliev[2][Knot[7, 7]], Vassiliev[3][Knot[7, 7]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[7, 7]][q, t] |
Out[15]= | 3 1 2 1 1 2 3 3 2
- + 2 q + ----- + ----- + ----- + ---- + --- + 2 q t + 2 q t + q t +
q 7 3 5 2 3 2 3 q t
q t q t q t q t
5 2 5 3 7 3 9 4
2 q t + q t + q t + q t |