8 1

From Knot Atlas
Revision as of 19:09, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

7 7.gif

7_7

8 2.gif

8_2

8 1.gif Visit 8 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 1's page at Knotilus!

Visit 8 1's page at the original Knot Atlas!

8 1 Quick Notes


8 1 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,16,6,1 X7,14,8,15 X13,8,14,9 X15,6,16,7
Gauss code -1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5
Dowker-Thistlethwaite code 4 10 16 14 12 2 8 6
Conway Notation [62]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-3]
Hyperbolic Volume 3.42721
A-Polynomial See Data:8 1/A-polynomial

[edit Notes for 8 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 8 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 13, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-3, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 8 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012χ
5        11
3         0
1      21 1
-1     11  0
-3    11   0
-5   11    0
-7   1     -1
-9 11      0
-11         0
-131        1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 1]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 1]]
Out[3]=  
PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], 
  X[5, 16, 6, 1], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7]]
In[4]:=
GaussCode[Knot[8, 1]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -5, 8, -6, 7, -2, 3, -4, 2, -7, 6, -8, 5]
In[5]:=
BR[Knot[8, 1]]
Out[5]=  
BR[5, {-1, -1, -2, 1, -2, -3, 2, 4, -3, 4}]
In[6]:=
alex = Alexander[Knot[8, 1]][t]
Out[6]=  
    3

7 - - - 3 t

t
In[7]:=
Conway[Knot[8, 1]][z]
Out[7]=  
       2
1 - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 1]}
In[9]:=
{KnotDet[Knot[8, 1]], KnotSignature[Knot[8, 1]]}
Out[9]=  
{13, 0}
In[10]:=
J=Jones[Knot[8, 1]][q]
Out[10]=  
     -6    -5    -4   2    2    2        2

2 + q - q + q - -- + -- - - - q + q

                      3    2   q
q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 1], Knot[11, NonAlternating, 70]}
In[12]:=
A2Invariant[Knot[8, 1]][q]
Out[12]=  
 -20    -18    -12    -10    2    6    8
q    + q    - q    - q    + q  + q  + q
In[13]:=
Kauffman[Knot[8, 1]][a, z]
Out[13]=  
                                    2                        3
 -2    4    6      3        5     z       4  2      6  2   z       3

-a - a - a - 3 a z - 3 a z + -- + 7 a z + 6 a z + -- - a z +

                                   2                       a
                                  a

    3  3      5  3    4      2  4      4  4      6  4      5
 5 a  z  + 7 a  z  + z  - 2 a  z  - 8 a  z  - 5 a  z  + a z  - 

    3  5      5  5    2  6      4  6    6  6    3  7    5  7
4 a z - 5 a z + a z + 2 a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[8, 1]], Vassiliev[3][Knot[8, 1]]}
Out[14]=  
{0, 3}
In[15]:=
Kh[Knot[8, 1]][q, t]
Out[15]=  
1           1        1       1       1       1       1       1

- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 13 6 9 5 9 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  1      1           5  2
 ---- + --- + q t + q  t
  3     q t
q t