In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[9, 7]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 7]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 16, 6, 17], X[7, 18, 8, 1],
X[17, 6, 18, 7], X[9, 14, 10, 15], X[13, 10, 14, 11],
X[15, 8, 16, 9], X[11, 2, 12, 3]] |
In[4]:= | GaussCode[Knot[9, 7]] |
Out[4]= | GaussCode[-1, 9, -2, 1, -3, 5, -4, 8, -6, 7, -9, 2, -7, 6, -8, 3, -5, 4] |
In[5]:= | BR[Knot[9, 7]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -2, 1, -2, -3, 2, -3, -3}] |
In[6]:= | alex = Alexander[Knot[9, 7]][t] |
Out[6]= | 3 7 2
9 + -- - - - 7 t + 3 t
2 t
t |
In[7]:= | Conway[Knot[9, 7]][z] |
Out[7]= | 2 4
1 + 5 z + 3 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 7]} |
In[9]:= | {KnotDet[Knot[9, 7]], KnotSignature[Knot[9, 7]]} |
Out[9]= | {29, -4} |
In[10]:= | J=Jones[Knot[9, 7]][q] |
Out[10]= | -11 2 3 4 5 5 4 3 -3 -2
-q + --- - -- + -- - -- + -- - -- + -- - q + q
10 9 8 7 6 5 4
q q q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 7]} |
In[12]:= | A2Invariant[Knot[9, 7]][q] |
Out[12]= | -34 -28 -26 -18 -16 -12 2 -6
-q - q + q - q + q + q + --- + q
10
q |
In[13]:= | Kauffman[Knot[9, 7]][a, z] |
Out[13]= | 4 6 8 10 5 7 9 11 13
2 a + a + a + a - a z - a z - 3 a z - 2 a z + a z -
4 2 6 2 8 2 10 2 12 2 5 3 7 3
3 a z - 2 a z - 4 a z - 2 a z + 3 a z - a z + 2 a z +
9 3 11 3 13 3 4 4 8 4 10 4
11 a z + 5 a z - 3 a z + a z + 7 a z + 2 a z -
12 4 5 5 7 5 9 5 11 5 13 5 6 6
6 a z + a z - a z - 9 a z - 6 a z + a z + a z -
8 6 10 6 12 6 7 7 9 7 11 7 8 8
3 a z - 2 a z + 2 a z + a z + 3 a z + 2 a z + a z +
10 8
a z |
In[14]:= | {Vassiliev[2][Knot[9, 7]], Vassiliev[3][Knot[9, 7]]} |
Out[14]= | {0, -12} |
In[15]:= | Kh[Knot[9, 7]][q, t] |
Out[15]= | -5 -3 1 1 1 2 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
23 9 21 8 19 8 19 7 17 7 17 6
q t q t q t q t q t q t
2 3 2 2 3 2 2 1
------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
15 6 15 5 13 5 13 4 11 4 11 3 9 3 9 2
q t q t q t q t q t q t q t q t
2 1
----- + ----
7 2 5
q t q t |