9 12

From Knot Atlas
Revision as of 19:16, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

9 11.gif

9_11

9 13.gif

9_13

9 12.gif Visit 9 12's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 12's page at Knotilus!

Visit 9 12's page at the original Knot Atlas!

9 12 Quick Notes


9 12 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,16,6,17 X11,1,12,18 X17,13,18,12 X7,14,8,15 X13,8,14,9 X15,6,16,7 X9,2,10,3
Gauss code -1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4
Dowker-Thistlethwaite code 4 10 16 14 2 18 8 6 12
Conway Notation [4212]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][-1]
Hyperbolic Volume 8.83664
A-Polynomial See Data:9 12/A-polynomial

[edit Notes for 9 12's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 12's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 35, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 12. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
3         11
1        1 -1
-1       31 2
-3      32  -1
-5     32   1
-7    33    0
-9   23     -1
-11  13      2
-13 12       -1
-15 1        1
-171         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 12]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 12]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 16, 6, 17], X[11, 1, 12, 18], 
 X[17, 13, 18, 12], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7], 

X[9, 2, 10, 3]]
In[4]:=
GaussCode[Knot[9, 12]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4]
In[5]:=
BR[Knot[9, 12]]
Out[5]=  
BR[5, {-1, -1, 2, -1, -3, 2, -3, -4, 3, -4}]
In[6]:=
alex = Alexander[Knot[9, 12]][t]
Out[6]=  
      2    9            2

-13 - -- + - + 9 t - 2 t

      2   t
t
In[7]:=
Conway[Knot[9, 12]][z]
Out[7]=  
     2      4
1 + z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 12], Knot[11, NonAlternating, 84]}
In[9]:=
{KnotDet[Knot[9, 12]], KnotSignature[Knot[9, 12]]}
Out[9]=  
{35, -2}
In[10]:=
J=Jones[Knot[9, 12]][q]
Out[10]=  
      -8   2    3    5    6    6    5    4

-2 - q + -- - -- + -- - -- + -- - -- + - + q

           7    6    5    4    3    2   q
q q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 12], Knot[11, NonAlternating, 15]}
In[12]:=
A2Invariant[Knot[9, 12]][q]
Out[12]=  
  -26    -24    -22    -18    2     -14    -10    -6    -4   2     4

-q - q + q + q + --- - q - q + q - q + -- + q

                             16                              2
q q
In[13]:=
Kauffman[Knot[9, 12]][a, z]
Out[13]=  
     4      6    8      3        5      7      9        2      2  2

1 - a - 2 a - a - 2 a z - 4 a z - a z + a z - 2 z - 2 a z +

    4  2      6  2      8  2        3      3  3       5  3      7  3
 3 a  z  + 7 a  z  + 4 a  z  - 3 a z  + 4 a  z  + 13 a  z  + 3 a  z  - 

    9  3    4    2  4    4  4      6  4      8  4        5      3  5
 3 a  z  + z  - a  z  - a  z  - 5 a  z  - 6 a  z  + 2 a z  - 3 a  z  - 

     5  5      7  5    9  5      2  6      8  6      3  7      5  7
 11 a  z  - 5 a  z  + a  z  + 2 a  z  + 2 a  z  + 2 a  z  + 4 a  z  + 

    7  7    4  8    6  8
2 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[9, 12]], Vassiliev[3][Knot[9, 12]]}
Out[14]=  
{0, -3}
In[15]:=
Kh[Knot[9, 12]][q, t]
Out[15]=  
2    3     1        1        1        2        1        3        2

-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +

3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4

q q t q t q t q t q t q t q t

   3       3       3       3      2      3     t          3  2
 ----- + ----- + ----- + ----- + ---- + ---- + - + q t + q  t
  9  3    7  3    7  2    5  2    5      3     q
q t q t q t q t q t q t