9 38
|
|
Visit 9 38's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 38's page at Knotilus! Visit 9 38's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1627 X5,14,6,15 X7,18,8,1 X15,8,16,9 X3,10,4,11 X9,4,10,5 X17,12,18,13 X11,16,12,17 X13,2,14,3 |
Gauss code | -1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3 |
Dowker-Thistlethwaite code | 6 10 14 18 4 16 2 8 12 |
Conway Notation | [.2.2.2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 38"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 57, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (6, -14) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 38. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 38]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 38]] |
Out[3]= | PD[X[1, 6, 2, 7], X[5, 14, 6, 15], X[7, 18, 8, 1], X[15, 8, 16, 9],X[3, 10, 4, 11], X[9, 4, 10, 5], X[17, 12, 18, 13],X[11, 16, 12, 17], X[13, 2, 14, 3]] |
In[4]:= | GaussCode[Knot[9, 38]] |
Out[4]= | GaussCode[-1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3] |
In[5]:= | BR[Knot[9, 38]] |
Out[5]= | BR[4, {-1, -1, -2, -2, 3, -2, 1, -2, -3, -3, -2}] |
In[6]:= | alex = Alexander[Knot[9, 38]][t] |
Out[6]= | 5 14 2 |
In[7]:= | Conway[Knot[9, 38]][z] |
Out[7]= | 2 4 1 + 6 z + 5 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 38], Knot[10, 63]} |
In[9]:= | {KnotDet[Knot[9, 38]], KnotSignature[Knot[9, 38]]} |
Out[9]= | {57, -4} |
In[10]:= | J=Jones[Knot[9, 38]][q] |
Out[10]= | -11 3 6 8 10 10 8 7 3 -2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 38]} |
In[12]:= | A2Invariant[Knot[9, 38]][q] |
Out[12]= | -34 -32 -30 3 2 -22 2 4 -12 2 2 |
In[13]:= | Kauffman[Knot[9, 38]][a, z] |
Out[13]= | 6 8 7 9 11 13 4 2 6 2 |
In[14]:= | {Vassiliev[2][Knot[9, 38]], Vassiliev[3][Knot[9, 38]]} |
Out[14]= | {0, -14} |
In[15]:= | Kh[Knot[9, 38]][q, t] |
Out[15]= | -5 -3 1 2 1 4 2 4 |