In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[9, 39]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 39]] |
Out[3]= | PD[X[1, 6, 2, 7], X[3, 11, 4, 10], X[7, 18, 8, 1], X[17, 13, 18, 12],
X[9, 17, 10, 16], X[5, 15, 6, 14], X[15, 5, 16, 4], X[11, 3, 12, 2],
X[13, 9, 14, 8]] |
In[4]:= | GaussCode[Knot[9, 39]] |
Out[4]= | GaussCode[-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3] |
In[5]:= | BR[Knot[9, 39]] |
Out[5]= | BR[5, {1, 1, 2, -1, -3, -2, 1, 4, 3, -2, 3, 4}] |
In[6]:= | alex = Alexander[Knot[9, 39]][t] |
Out[6]= | 3 14 2
-21 - -- + -- + 14 t - 3 t
2 t
t |
In[7]:= | Conway[Knot[9, 39]][z] |
Out[7]= | 2 4
1 + 2 z - 3 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 39], Knot[11, NonAlternating, 162]} |
In[9]:= | {KnotDet[Knot[9, 39]], KnotSignature[Knot[9, 39]]} |
Out[9]= | {55, 2} |
In[10]:= | J=Jones[Knot[9, 39]][q] |
Out[10]= | 1 2 3 4 5 6 7 8
-3 + - + 6 q - 8 q + 10 q - 9 q + 8 q - 6 q + 3 q - q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 39], Knot[11, NonAlternating, 11],
Knot[11, NonAlternating, 112]} |
In[12]:= | A2Invariant[Knot[9, 39]][q] |
Out[12]= | -4 -2 2 4 6 8 10 12 14 16
-1 + q - q + 3 q - q + 2 q + q - q + q - 2 q + 2 q -
20 22 24 26
q + 2 q - q - q |
In[13]:= | Kauffman[Knot[9, 39]][a, z] |
Out[13]= | 2 2 2
-8 2 2 2 z z 3 z z 2 3 z 9 z 12 z
-a - -- - -- - -- + -- - -- - --- - -- - z + ---- + ---- + ----- +
6 4 2 9 7 5 3 8 6 4
a a a a a a a a a a
2 3 3 3 3 3 4 4
5 z 2 z 2 z 12 z 5 z 3 z 4 6 z 13 z
---- - ---- + ---- + ----- + ---- - ---- + z - ---- - ----- -
2 9 7 5 3 a 8 6
a a a a a a a
4 4 5 5 5 5 5 6 6 6
15 z 7 z z 7 z 18 z 7 z 3 z 3 z 3 z 5 z
----- - ---- + -- - ---- - ----- - ---- + ---- + ---- + ---- + ---- +
4 2 9 7 5 3 a 8 6 4
a a a a a a a a a
6 7 7 7 8 8
5 z 4 z 9 z 5 z 2 z 2 z
---- + ---- + ---- + ---- + ---- + ----
2 7 5 3 6 4
a a a a a a |
In[14]:= | {Vassiliev[2][Knot[9, 39]], Vassiliev[3][Knot[9, 39]]} |
Out[14]= | {0, 4} |
In[15]:= | Kh[Knot[9, 39]][q, t] |
Out[15]= | 3 1 2 q 3 5 5 2 7 2
4 q + 3 q + ----- + --- + - + 5 q t + 3 q t + 5 q t + 5 q t +
3 2 q t t
q t
7 3 9 3 9 4 11 4 11 5 13 5
4 q t + 5 q t + 4 q t + 4 q t + 2 q t + 4 q t +
13 6 15 6 17 7
q t + 2 q t + q t |