10 155
|
|
Visit 10 155's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 155's page at Knotilus! Visit 10 155's page at the original Knot Atlas! |
10 155 Further Notes and Views
Knot presentations
Planar diagram presentation | X1627 X7,16,8,17 X3,11,4,10 X15,3,16,2 X5,15,6,14 X11,5,12,4 X9,18,10,19 X20,14,1,13 X17,8,18,9 X12,20,13,19 |
Gauss code | -1, 4, -3, 6, -5, 1, -2, 9, -7, 3, -6, -10, 8, 5, -4, 2, -9, 7, 10, -8 |
Dowker-Thistlethwaite code | 6 10 14 16 18 4 -20 2 8 -12 |
Conway Notation | [-3:2:2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-2 q^{18}+4 q^{16}-2 q^{14}+5 q^{12}-2 q^{10}-2 q^8+2 q^6+2 q^2+8-16 q^{-2} +22 q^{-4} -30 q^{-6} +22 q^{-8} -22 q^{-10} +8 q^{-12} +8 q^{-14} -14 q^{-16} +34 q^{-18} -34 q^{-20} +46 q^{-22} -44 q^{-24} +40 q^{-26} -39 q^{-28} +20 q^{-30} -10 q^{-32} -8 q^{-34} +19 q^{-36} -26 q^{-38} +32 q^{-40} -24 q^{-42} +19 q^{-44} -14 q^{-46} +6 q^{-48} -2 q^{-50} + q^{-52} } |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 155"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (-2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 155. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 155]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 155]] |
Out[3]= | PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[3, 11, 4, 10], X[15, 3, 16, 2],X[5, 15, 6, 14], X[11, 5, 12, 4], X[9, 18, 10, 19], X[20, 14, 1, 13],X[17, 8, 18, 9], X[12, 20, 13, 19]] |
In[4]:= | GaussCode[Knot[10, 155]] |
Out[4]= | GaussCode[-1, 4, -3, 6, -5, 1, -2, 9, -7, 3, -6, -10, 8, 5, -4, 2, -9, 7, 10, -8] |
In[5]:= | BR[Knot[10, 155]] |
Out[5]= | BR[3, {1, 1, 1, 2, -1, -1, 2, -1, -1, 2}] |
In[6]:= | alex = Alexander[Knot[10, 155]][t] |
Out[6]= | -3 3 5 2 3 |
In[7]:= | Conway[Knot[10, 155]][z] |
Out[7]= | 2 4 6 1 - 2 z - 3 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 9], Knot[10, 155], Knot[11, NonAlternating, 37]} |
In[9]:= | {KnotDet[Knot[10, 155]], KnotSignature[Knot[10, 155]]} |
Out[9]= | {25, 0} |
In[10]:= | J=Jones[Knot[10, 155]][q] |
Out[10]= | -2 2 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 137], Knot[10, 155], Knot[11, NonAlternating, 37]} |
In[12]:= | A2Invariant[Knot[10, 155]][q] |
Out[12]= | -6 2 6 10 14 18 |
In[13]:= | Kauffman[Knot[10, 155]][a, z] |
Out[13]= | 2 2 2 32 4 2 z 2 z 2 4 z z 11 z 2 2 8 z |
In[14]:= | {Vassiliev[2][Knot[10, 155]], Vassiliev[3][Knot[10, 155]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[10, 155]][q, t] |
Out[15]= | 3 1 1 1 3 3 2 5 2 |