In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[8, 19]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[9, 15, 10, 14], X[5, 13, 6, 12],
X[13, 7, 14, 6], X[11, 1, 12, 16], X[15, 11, 16, 10], X[2, 8, 3, 7]] |
In[3]:= | GaussCode[Knot[8, 19]] |
Out[3]= | GaussCode[1, -8, 2, -1, -4, 5, 8, -2, -3, 7, -6, 4, -5, 3, -7, 6] |
In[4]:= | DTCode[Knot[8, 19]] |
Out[4]= | DTCode[4, 8, -12, 2, -14, -16, -6, -10] |
In[5]:= | br = BR[Knot[8, 19]] |
Out[5]= | BR[3, {1, 1, 1, 2, 1, 1, 1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[8, 19]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[8, 19]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[8, 19]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 3, 4, 1} |
In[10]:= | alex = Alexander[Knot[8, 19]][t] |
Out[10]= | -3 -2 2 3
1 + t - t - t + t |
In[11]:= | Conway[Knot[8, 19]][z] |
Out[11]= | 2 4 6
1 + 5 z + 5 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 19]} |
In[13]:= | {KnotDet[Knot[8, 19]], KnotSignature[Knot[8, 19]]} |
Out[13]= | {3, 6} |
In[14]:= | Jones[Knot[8, 19]][q] |
Out[14]= | 3 5 8
q + q - q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 19]} |
In[16]:= | A2Invariant[Knot[8, 19]][q] |
Out[16]= | 10 12 14 16 18 22 24 26 28 32
q + q + 2 q + 2 q + 2 q - q - 2 q - 2 q - q + q |
In[17]:= | HOMFLYPT[Knot[8, 19]][a, z] |
Out[17]= | 2 2 4 4 6
-10 5 5 5 z 10 z z 6 z z
a - -- + -- - ---- + ----- - -- + ---- + --
8 6 8 6 8 6 6
a a a a a a a |
In[18]:= | Kauffman[Knot[8, 19]][a, z] |
Out[18]= | 2 2 3 3 4
-10 5 5 5 z 5 z 10 z 10 z 5 z 5 z 6 z
-a - -- - -- + --- + --- + ----- + ----- - ---- - ---- - ---- -
8 6 9 7 8 6 9 7 8
a a a a a a a a a
4 5 5 6 6
6 z z z z z
---- + -- + -- + -- + --
6 9 7 8 6
a a a a a |
In[19]:= | {Vassiliev[2][Knot[8, 19]], Vassiliev[3][Knot[8, 19]]} |
Out[19]= | {5, 10} |
In[20]:= | Kh[Knot[8, 19]][q, t] |
Out[20]= | 5 7 9 2 13 3 11 4 13 4 15 5 17 5
q + q + q t + q t + q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[8, 19], 2][q] |
Out[21]= | 6 9 12 13 16 19 20 22 23
q + q + q - q - q - q + q - q + q |