In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 113]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15],
X[12, 7, 13, 8], X[8, 18, 9, 17], X[6, 19, 7, 20], X[16, 12, 17, 11],
X[18, 13, 19, 14], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 113]] |
Out[3]= | GaussCode[1, -10, 2, -1, 3, -7, 5, -6, 10, -2, 8, -5, 9, -3, 4, -8, 6,
-9, 7, -4] |
In[4]:= | DTCode[Knot[10, 113]] |
Out[4]= | DTCode[4, 10, 14, 12, 2, 16, 18, 20, 8, 6] |
In[5]:= | br = BR[Knot[10, 113]] |
Out[5]= | BR[4, {1, 1, 1, 2, -3, 2, -1, 2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 113]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 113]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 113]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 113]][t] |
Out[10]= | 2 11 26 2 3
-33 + -- - -- + -- + 26 t - 11 t + 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 113]][z] |
Out[11]= | 4 6
1 + z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 113], Knot[11, Alternating, 107], Knot[11, Alternating, 347]} |
In[13]:= | {KnotDet[Knot[10, 113]], KnotSignature[Knot[10, 113]]} |
Out[13]= | {111, 2} |
In[14]:= | Jones[Knot[10, 113]][q] |
Out[14]= | -2 4 2 3 4 5 6 7 8
-8 - q + - + 14 q - 17 q + 19 q - 18 q + 14 q - 10 q + 5 q - q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 113]} |
In[16]:= | A2Invariant[Knot[10, 113]][q] |
Out[16]= | -6 2 -2 2 4 6 10 12 14
-1 - q + -- - q + 5 q - 2 q + 4 q - 2 q + q - 5 q +
4
q
16 18 20 22 24
3 q - q - q + 3 q - q |
In[17]:= | HOMFLYPT[Knot[10, 113]][a, z] |
Out[17]= | 2 2 4 4 4 6 6
-6 3 3 2 2 z 3 z 4 z z 2 z z z
a - -- + -- - z - ---- + ---- - z - -- + -- + ---- + -- + --
4 2 4 2 6 4 2 4 2
a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 113]][a, z] |
Out[18]= | 2 2 2 3
-6 3 3 z z z z 2 3 z 8 z 8 z 5 z
-a - -- - -- + -- + -- - -- - - + 3 z + ---- + ---- + ---- + ---- +
4 2 7 5 3 a 6 4 2 7
a a a a a a a a a
3 3 3 4 4 4 4 5
16 z 17 z 5 z 3 4 5 z 4 z z 6 z z
----- + ----- + ---- - a z - 6 z - ---- - ---- + -- - ---- + -- -
5 3 a 8 6 4 2 9
a a a a a a a
5 5 5 5 6 6 6
16 z 36 z 30 z 10 z 5 6 5 z 9 z 23 z
----- - ----- - ----- - ----- + a z + 4 z + ---- - ---- - ----- -
7 5 3 a 8 6 4
a a a a a a
6 7 7 7 7 8 8 8 9
5 z 10 z 15 z 12 z 7 z 9 z 16 z 7 z 3 z
---- + ----- + ----- + ----- + ---- + ---- + ----- + ---- + ---- +
2 7 5 3 a 6 4 2 5
a a a a a a a a
9
3 z
----
3
a |
In[19]:= | {Vassiliev[2][Knot[10, 113]], Vassiliev[3][Knot[10, 113]]} |
Out[19]= | {0, -1} |
In[20]:= | Kh[Knot[10, 113]][q, t] |
Out[20]= | 3 1 3 1 5 3 q 3 5
9 q + 6 q + ----- + ----- + ---- + --- + --- + 9 q t + 8 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4
10 q t + 9 q t + 8 q t + 10 q t + 6 q t + 8 q t +
11 5 13 5 13 6 15 6 17 7
4 q t + 6 q t + q t + 4 q t + q t |
In[21]:= | ColouredJones[Knot[10, 113], 2][q] |
Out[21]= | -7 4 3 11 29 12 56 2 3
-94 + q - -- + -- + -- - -- + -- + -- + 4 q + 157 q - 171 q -
6 5 4 3 2 q
q q q q q
4 5 6 7 8 9 10
47 q + 269 q - 203 q - 116 q + 325 q - 174 q - 161 q +
11 12 13 14 15 16 17
295 q - 102 q - 159 q + 196 q - 27 q - 108 q + 83 q +
18 19 20 21 22 23
8 q - 41 q + 16 q + 5 q - 5 q + q |