In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 123]] |
Out[2]= | PD[X[8, 2, 9, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[4, 18, 5, 17],
X[18, 11, 19, 12], X[2, 15, 3, 16], X[16, 10, 17, 9],
X[20, 14, 1, 13], X[14, 7, 15, 8], X[6, 19, 7, 20]] |
In[3]:= | GaussCode[Knot[10, 123]] |
Out[3]= | GaussCode[1, -6, 2, -4, 3, -10, 9, -1, 7, -2, 5, -3, 8, -9, 6, -7, 4,
-5, 10, -8] |
In[4]:= | DTCode[Knot[10, 123]] |
Out[4]= | DTCode[8, 10, 12, 14, 16, 18, 20, 2, 4, 6] |
In[5]:= | br = BR[Knot[10, 123]] |
Out[5]= | BR[3, {-1, 2, -1, 2, -1, 2, -1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 123]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 123]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 123]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 2, 4, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 123]][t] |
Out[10]= | -4 6 15 24 2 3 4
29 + t - -- + -- - -- - 24 t + 15 t - 6 t + t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 123]][z] |
Out[11]= | 2 4 6 8
1 - 2 z - z + 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 123], Knot[11, Alternating, 28]} |
In[13]:= | {KnotDet[Knot[10, 123]], KnotSignature[Knot[10, 123]]} |
Out[13]= | {121, 0} |
In[14]:= | Jones[Knot[10, 123]][q] |
Out[14]= | -5 5 10 15 19 2 3 4 5
21 - q + -- - -- + -- - -- - 19 q + 15 q - 10 q + 5 q - q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 123]} |
In[16]:= | A2Invariant[Knot[10, 123]][q] |
Out[16]= | -14 3 2 3 3 4 2 4 8 10
-5 - q + --- - --- + -- - -- + -- + 4 q - 3 q + 3 q - 2 q +
12 10 8 4 2
q q q q q
12 14
3 q - q |
In[17]:= | HOMFLYPT[Knot[10, 123]][a, z] |
Out[17]= | 2 4
2 2 2 z 2 2 4 2 z 2 4 6
-3 + -- + 2 a - 4 z + -- + a z + 3 z - ---- - 2 a z + 4 z -
2 2 2
a a a
6
z 2 6 8
-- - a z + z
2
a |
In[18]:= | Kauffman[Knot[10, 123]][a, z] |
Out[18]= | 2 3 3
2 2 2 z 2 6 z 2 2 5 z 21 z
-3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + ----- +
2 a 2 3 a
a a a
4 4 5
3 3 3 4 5 z 3 z 2 4 4 4 z
21 a z + 5 a z + 4 z - ---- - ---- - 3 a z - 5 a z + -- -
4 2 5
a a a
5 5 6 6
15 z 38 z 5 3 5 5 5 6 5 z 11 z
----- - ----- - 38 a z - 15 a z + a z - 32 z + ---- - ----- -
3 a 4 2
a a a
7 7
2 6 4 6 10 z 14 z 7 3 7 8
11 a z + 5 a z + ----- + ----- + 14 a z + 10 a z + 20 z +
3 a
a
8 9
10 z 2 8 4 z 9
----- + 10 a z + ---- + 4 a z
2 a
a |
In[19]:= | {Vassiliev[2][Knot[10, 123]], Vassiliev[3][Knot[10, 123]]} |
Out[19]= | {-2, 0} |
In[20]:= | Kh[Knot[10, 123]][q, t] |
Out[20]= | 11 1 4 1 6 4 9 6
-- + 11 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
10 9 3 3 2 5 2 5 3
---- + --- + 9 q t + 10 q t + 6 q t + 9 q t + 4 q t +
3 q t
q t
7 3 7 4 9 4 11 5
6 q t + q t + 4 q t + q t |
In[21]:= | ColouredJones[Knot[10, 123], 2][q] |
Out[21]= | -15 5 5 15 41 14 80 121 10 206 197
383 + q - --- + --- + --- - --- + --- + -- - --- - -- + --- - --- -
14 13 12 11 10 9 8 7 6 5
q q q q q q q q q q
85 331 215 169 2 3 4 5
-- + --- - --- - --- - 169 q - 215 q + 331 q - 85 q - 197 q +
4 3 2 q
q q q
6 7 8 9 10 11 12 13
206 q - 10 q - 121 q + 80 q + 14 q - 41 q + 15 q + 5 q -
14 15
5 q + q |