In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 80]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[13, 18, 14, 19],
X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1],
X[19, 14, 20, 15], X[11, 6, 12, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 80]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -4, 8, -7, 5, -6,
4, -8, 7] |
In[4]:= | DTCode[Knot[10, 80]] |
Out[4]= | DTCode[4, 8, 12, 2, 16, 6, 18, 20, 10, 14] |
In[5]:= | br = BR[Knot[10, 80]] |
Out[5]= | BR[4, {-1, -1, -1, 2, -1, -1, -3, -2, -2, -2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 80]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 80]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 80]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 3, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 80]][t] |
Out[10]= | 3 9 15 2 3
-17 + -- - -- + -- + 15 t - 9 t + 3 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 80]][z] |
Out[11]= | 2 4 6
1 + 6 z + 9 z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 80]} |
In[13]:= | {KnotDet[Knot[10, 80]], KnotSignature[Knot[10, 80]]} |
Out[13]= | {71, -6} |
In[14]:= | Jones[Knot[10, 80]][q] |
Out[14]= | -13 3 6 10 11 12 11 8 6 2 -3
q - --- + --- - --- + -- - -- + -- - -- + -- - -- + q
12 11 10 9 8 7 6 5 4
q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 80]} |
In[16]:= | A2Invariant[Knot[10, 80]][q] |
Out[16]= | -40 -38 -36 -34 3 2 -28 3 3 -22 3
q + q - q + q - --- - --- - q - --- + --- - q + --- +
32 30 26 24 20
q q q q q
2 3 -12 -10
--- + --- - q + q
18 14
q q |
In[17]:= | HOMFLYPT[Knot[10, 80]][a, z] |
Out[17]= | 6 8 10 12 6 2 8 2 10 2 12 2
2 a + 3 a - 6 a + 2 a + 5 a z + 9 a z - 9 a z + a z +
6 4 8 4 10 4 6 6 8 6
4 a z + 8 a z - 3 a z + a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 80]][a, z] |
Out[18]= | 6 8 10 12 7 9 11 13
-2 a + 3 a + 6 a + 2 a + a z - 8 a z - 12 a z - 2 a z +
15 6 2 8 2 10 2 12 2 14 2
a z + 5 a z - 7 a z - 13 a z + 2 a z + 2 a z -
16 2 7 3 9 3 11 3 13 3 15 3
a z + 2 a z + 22 a z + 29 a z + 6 a z - 3 a z -
6 4 8 4 10 4 12 4 14 4 16 4
4 a z + 8 a z + 13 a z - 5 a z - 5 a z + a z -
7 5 9 5 11 5 13 5 15 5 6 6
5 a z - 23 a z - 29 a z - 8 a z + 3 a z + a z -
8 6 10 6 12 6 14 6 7 7 9 7
8 a z - 15 a z - a z + 5 a z + 2 a z + 6 a z +
11 7 13 7 8 8 10 8 12 8 9 9 11 9
10 a z + 6 a z + 3 a z + 7 a z + 4 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 80]], Vassiliev[3][Knot[10, 80]]} |
Out[19]= | {6, -12} |
In[20]:= | Kh[Knot[10, 80]][q, t] |
Out[20]= | -7 -5 1 2 1 4 2 6
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
27 10 25 9 23 9 23 8 21 8 21 7
q t q t q t q t q t q t
4 5 6 7 5 4 7
------ + ------ + ------ + ------ + ------ + ------ + ------ +
19 7 19 6 17 6 17 5 15 5 15 4 13 4
q t q t q t q t q t q t q t
4 4 2 4 2
------ + ------ + ------ + ----- + ----
13 3 11 3 11 2 9 2 7
q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 80], 2][q] |
Out[21]= | -36 3 2 6 17 11 23 51 21 58 93
q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- +
35 34 33 32 31 30 29 28 27 26
q q q q q q q q q q
20 95 114 4 112 103 17 103 68 30 71
--- + --- - --- + --- + --- - --- - --- + --- - --- - --- + --- -
25 24 23 22 21 20 19 18 17 16 15
q q q q q q q q q q q
28 27 33 4 12 8 -8 2 -6
--- - --- + --- - --- - --- + -- + q - -- + q
14 13 12 11 10 9 7
q q q q q q q |