10 7

From Knot Atlas
Revision as of 20:06, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

10 6.gif

10_6

10 8.gif

10_8

10 7.gif Visit 10 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 7's page at Knotilus!

Visit 10 7's page at the original Knot Atlas!

10 7 Quick Notes


10 7 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X11,20,12,1 X19,6,20,7 X7,18,8,19 X9,16,10,17 X15,10,16,11 X17,8,18,9
Gauss code -1, 4, -3, 1, -2, 6, -7, 10, -8, 9, -5, 3, -4, 2, -9, 8, -10, 7, -6, 5
Dowker-Thistlethwaite code 4 12 14 18 16 20 2 10 8 6
Conway Notation [5212]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 12, width is 5.

Braid index is 5.

A Morse Link Presentation:

10 7 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-11][-1]
Hyperbolic Volume 9.11591
A-Polynomial See Data:10 7/A-polynomial

[edit Notes for 10 7's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
Topological 4 genus
Concordance genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
Rasmussen s-Invariant -2

[edit Notes for 10 7's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4-z^2+1}
2nd Alexander ideal (db, data sources)
Determinant and Signature { 43, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8+a^8-z^4 a^6-2 z^2 a^6-2 a^6-z^4 a^4+a^4-z^4 a^2-z^2 a^2+z^2+1}
Kauffman polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-4 z^4 a^{10}+3 z^2 a^{10}+2 z^7 a^9-8 z^5 a^9+8 z^3 a^9-3 z a^9+2 z^8 a^8-7 z^6 a^8+6 z^4 a^8-3 z^2 a^8+a^8+z^9 a^7-z^7 a^7-6 z^5 a^7+10 z^3 a^7-5 z a^7+4 z^8 a^6-15 z^6 a^6+20 z^4 a^6-10 z^2 a^6+2 a^6+z^9 a^5-z^7 a^5-2 z^5 a^5+6 z^3 a^5-2 z a^5+2 z^8 a^4-5 z^6 a^4+8 z^4 a^4-4 z^2 a^4+a^4+2 z^7 a^3-2 z^5 a^3+z^3 a^3+2 z^6 a^2-z^4 a^2-2 z^2 a^2+2 z^5 a-3 z^3 a+z^4-2 z^2+1}
The A2 invariant
The G2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-q^{140}+2 q^{138}-3 q^{136}+2 q^{134}-3 q^{132}-q^{130}+6 q^{128}-10 q^{126}+12 q^{124}-12 q^{122}+8 q^{120}+2 q^{118}-12 q^{116}+22 q^{114}-24 q^{112}+21 q^{110}-8 q^{108}-7 q^{106}+20 q^{104}-23 q^{102}+22 q^{100}-9 q^{98}-4 q^{96}+14 q^{94}-16 q^{92}+8 q^{90}+2 q^{88}-14 q^{86}+19 q^{84}-16 q^{82}+q^{80}+10 q^{78}-23 q^{76}+27 q^{74}-25 q^{72}+11 q^{70}+2 q^{68}-19 q^{66}+29 q^{64}-30 q^{62}+21 q^{60}-6 q^{58}-8 q^{56}+18 q^{54}-20 q^{52}+15 q^{50}-3 q^{48}-6 q^{46}+11 q^{44}-8 q^{42}+q^{40}+10 q^{38}-14 q^{36}+14 q^{34}-7 q^{32}-2 q^{30}+9 q^{28}-14 q^{26}+16 q^{24}-13 q^{22}+9 q^{20}-2 q^{18}-5 q^{16}+10 q^{14}-12 q^{12}+14 q^{10}-10 q^8+6 q^6-6 q^2+9-8 q^{-2} +7 q^{-4} -3 q^{-6} + q^{-8} +2 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} }

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a59, K11n3, ...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (-1, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{110}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{86}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -96} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -64} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{5498}{15}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3967}{18}}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
3          11
1         1 -1
-1        31 2
-3       32  -1
-5      42   2
-7     33    0
-9    34     -1
-11   23      1
-13  13       -2
-15 12        1
-17 1         -1
-191          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials