9 45

From Knot Atlas
Revision as of 20:08, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

9 44.gif

9_44

9 46.gif

9_46

9 45.gif Visit 9 45's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 45's page at Knotilus!

Visit 9 45's page at the original Knot Atlas!

9 45 Quick Notes


9 45 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X10,6,11,5 X8394 X2,9,3,10 X7,14,8,15 X18,15,1,16 X16,11,17,12 X12,17,13,18 X13,6,14,7
Gauss code 1, -4, 3, -1, 2, 9, -5, -3, 4, -2, 7, -8, -9, 5, 6, -7, 8, -6
Dowker-Thistlethwaite code 4 8 10 -14 2 16 -6 18 12
Conway Notation [211,21,2-]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4.

Braid index is 4.

A Morse Link Presentation:

9 45 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][1]
Hyperbolic Volume 8.60203
A-Polynomial See Data:9 45/A-polynomial

[edit Notes for 9 45's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 45's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 23, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (2, -4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 45. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-1       22
-3      21-1
-5     21 1
-7    22  0
-9   22   0
-11  12    1
-13 12     -1
-15 1      1
-171       -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials