9 44
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 44's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
| Gauss code | -1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6 |
| Dowker-Thistlethwaite code | 4 8 10 -14 2 -16 -6 -18 -12 |
| Conway Notation | [22,21,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
|
![]() [{10, 3}, {1, 7}, {8, 4}, {7, 10}, {6, 9}, {3, 8}, {2, 5}, {4, 6}, {5, 1}, {9, 2}] |
[edit Notes on presentations of 9 44]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 44"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 -14 2 -16 -6 -18 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{10, 3}, {1, 7}, {8, 4}, {7, 10}, {6, 9}, {3, 8}, {2, 5}, {4, 6}, {5, 1}, {9, 2}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
[edit Notes for 9 44's three dimensional invariants] 9_44 has girth 4. See arXiv:math.GT/0508590 and a forthcoming paper by the same authors. |
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle q^{56}-q^{52}-q^{50}+q^{48}+q^{46}-2q^{44}-2q^{42}+q^{40}+2q^{38}-2q^{34}-q^{32}+2q^{30}+q^{28}-q^{24}+q^{22}+q^{20}+q^{18}-q^{16}+2q^{12}+q^{10}-q^{8}-q^{6}+q^{4}+2q^{2}-2q^{-2}+2q^{-6}-2q^{-10}-q^{-12}+q^{-14}+2q^{-16}-q^{-20}+q^{-26}} |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 44"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 44"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 9 44. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+2 q^4+q^3-5 q^2+4 q+4-9 q^{-1} +4 q^{-2} +6 q^{-3} -9 q^{-4} +2 q^{-5} +7 q^{-6} -7 q^{-7} - q^{-8} +7 q^{-9} -4 q^{-10} -3 q^{-11} +5 q^{-12} - q^{-13} -2 q^{-14} + q^{-15} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+q^{12}+q^{11}+2 q^{10}-4 q^9-4 q^8+4 q^7+8 q^6-3 q^5-13 q^4+q^3+18 q^2+q-18-5 q^{-1} +20 q^{-2} +6 q^{-3} -18 q^{-4} -8 q^{-5} +17 q^{-6} +7 q^{-7} -13 q^{-8} -9 q^{-9} +11 q^{-10} +8 q^{-11} -5 q^{-12} -10 q^{-13} +3 q^{-14} +8 q^{-15} +3 q^{-16} -8 q^{-17} -6 q^{-18} +5 q^{-19} +8 q^{-20} -2 q^{-21} -8 q^{-22} - q^{-23} +7 q^{-24} +2 q^{-25} -4 q^{-26} -2 q^{-27} + q^{-28} +2 q^{-29} - q^{-30} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}+q^{21}+2 q^{20}-q^{18}-7 q^{17}-q^{16}+9 q^{15}+9 q^{14}+3 q^{13}-22 q^{12}-17 q^{11}+13 q^{10}+28 q^9+24 q^8-33 q^7-47 q^6+3 q^5+44 q^4+53 q^3-31 q^2-70 q-11+44 q^{-1} +71 q^{-2} -21 q^{-3} -77 q^{-4} -18 q^{-5} +38 q^{-6} +74 q^{-7} -15 q^{-8} -73 q^{-9} -17 q^{-10} +28 q^{-11} +68 q^{-12} -8 q^{-13} -63 q^{-14} -16 q^{-15} +14 q^{-16} +58 q^{-17} +3 q^{-18} -46 q^{-19} -15 q^{-20} -5 q^{-21} +43 q^{-22} +14 q^{-23} -23 q^{-24} -8 q^{-25} -21 q^{-26} +20 q^{-27} +14 q^{-28} -3 q^{-29} +7 q^{-30} -23 q^{-31} +3 q^{-33} +2 q^{-34} +19 q^{-35} -10 q^{-36} -5 q^{-37} -7 q^{-38} -4 q^{-39} +16 q^{-40} -5 q^{-43} -6 q^{-44} +5 q^{-45} + q^{-46} +2 q^{-47} - q^{-48} -2 q^{-49} + q^{-50} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{31}-3 q^{29}-2 q^{28}+q^{27}+3 q^{26}+10 q^{25}+5 q^{24}-11 q^{23}-19 q^{22}-14 q^{21}+6 q^{20}+34 q^{19}+40 q^{18}-48 q^{16}-68 q^{15}-24 q^{14}+56 q^{13}+103 q^{12}+59 q^{11}-57 q^{10}-136 q^9-95 q^8+44 q^7+162 q^6+131 q^5-25 q^4-175 q^3-164 q^2+8 q+181+180 q^{-1} +10 q^{-2} -174 q^{-3} -196 q^{-4} -22 q^{-5} +173 q^{-6} +195 q^{-7} +30 q^{-8} -163 q^{-9} -196 q^{-10} -35 q^{-11} +159 q^{-12} +189 q^{-13} +37 q^{-14} -146 q^{-15} -185 q^{-16} -42 q^{-17} +137 q^{-18} +173 q^{-19} +50 q^{-20} -116 q^{-21} -168 q^{-22} -58 q^{-23} +96 q^{-24} +151 q^{-25} +72 q^{-26} -68 q^{-27} -139 q^{-28} -80 q^{-29} +42 q^{-30} +111 q^{-31} +88 q^{-32} -9 q^{-33} -90 q^{-34} -83 q^{-35} -14 q^{-36} +55 q^{-37} +74 q^{-38} +33 q^{-39} -27 q^{-40} -54 q^{-41} -38 q^{-42} +32 q^{-44} +33 q^{-45} +14 q^{-46} -9 q^{-47} -20 q^{-48} -18 q^{-49} -8 q^{-50} +7 q^{-51} +11 q^{-52} +12 q^{-53} +9 q^{-54} -2 q^{-55} -13 q^{-56} -11 q^{-57} -5 q^{-58} +2 q^{-59} +13 q^{-60} +10 q^{-61} -7 q^{-63} -7 q^{-64} -4 q^{-65} +7 q^{-67} +4 q^{-68} - q^{-69} -2 q^{-70} - q^{-71} -2 q^{-72} + q^{-73} +2 q^{-74} - q^{-75} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{47}-q^{46}-q^{45}-q^{42}-q^{41}+8 q^{40}+3 q^{39}-2 q^{37}-8 q^{36}-17 q^{35}-16 q^{34}+17 q^{33}+26 q^{32}+31 q^{31}+25 q^{30}-6 q^{29}-65 q^{28}-88 q^{27}-25 q^{26}+31 q^{25}+100 q^{24}+134 q^{23}+82 q^{22}-83 q^{21}-213 q^{20}-173 q^{19}-66 q^{18}+128 q^{17}+297 q^{16}+285 q^{15}+9 q^{14}-288 q^{13}-365 q^{12}-266 q^{11}+47 q^{10}+399 q^9+506 q^8+182 q^7-259 q^6-478 q^5-452 q^4-93 q^3+397 q^2+625 q+328-179 q^{-1} -490 q^{-2} -539 q^{-3} -199 q^{-4} +349 q^{-5} +645 q^{-6} +390 q^{-7} -120 q^{-8} -460 q^{-9} -549 q^{-10} -240 q^{-11} +310 q^{-12} +624 q^{-13} +399 q^{-14} -96 q^{-15} -428 q^{-16} -530 q^{-17} -248 q^{-18} +279 q^{-19} +587 q^{-20} +395 q^{-21} -71 q^{-22} -384 q^{-23} -500 q^{-24} -261 q^{-25} +221 q^{-26} +524 q^{-27} +395 q^{-28} -12 q^{-29} -301 q^{-30} -454 q^{-31} -296 q^{-32} +115 q^{-33} +420 q^{-34} +391 q^{-35} +84 q^{-36} -168 q^{-37} -372 q^{-38} -330 q^{-39} -28 q^{-40} +264 q^{-41} +347 q^{-42} +175 q^{-43} - q^{-44} -234 q^{-45} -311 q^{-46} -151 q^{-47} +75 q^{-48} +231 q^{-49} +193 q^{-50} +135 q^{-51} -59 q^{-52} -203 q^{-53} -182 q^{-54} -74 q^{-55} +73 q^{-56} +109 q^{-57} +163 q^{-58} +67 q^{-59} -51 q^{-60} -105 q^{-61} -105 q^{-62} -29 q^{-63} -11 q^{-64} +85 q^{-65} +76 q^{-66} +36 q^{-67} -7 q^{-68} -43 q^{-69} -22 q^{-70} -58 q^{-71} +2 q^{-72} +16 q^{-73} +25 q^{-74} +18 q^{-75} +8 q^{-76} +25 q^{-77} -28 q^{-78} -10 q^{-79} -16 q^{-80} -6 q^{-81} -7 q^{-82} +2 q^{-83} +33 q^{-84} +7 q^{-86} -5 q^{-87} -6 q^{-88} -15 q^{-89} -10 q^{-90} +12 q^{-91} + q^{-92} +8 q^{-93} +3 q^{-94} +3 q^{-95} -7 q^{-96} -6 q^{-97} +3 q^{-98} -2 q^{-99} +2 q^{-100} + q^{-101} +2 q^{-102} - q^{-103} -2 q^{-104} + q^{-105} } |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{63}-q^{62}-q^{61}-q^{60}+2 q^{58}+q^{57}+2 q^{56}+5 q^{55}+q^{54}-5 q^{53}-11 q^{52}-14 q^{51}-3 q^{50}+q^{49}+14 q^{48}+34 q^{47}+36 q^{46}+16 q^{45}-23 q^{44}-66 q^{43}-74 q^{42}-62 q^{41}-14 q^{40}+83 q^{39}+152 q^{38}+166 q^{37}+84 q^{36}-76 q^{35}-217 q^{34}-294 q^{33}-243 q^{32}-15 q^{31}+257 q^{30}+461 q^{29}+466 q^{28}+182 q^{27}-225 q^{26}-602 q^{25}-725 q^{24}-446 q^{23}+93 q^{22}+683 q^{21}+1000 q^{20}+770 q^{19}+109 q^{18}-684 q^{17}-1216 q^{16}-1089 q^{15}-386 q^{14}+595 q^{13}+1362 q^{12}+1380 q^{11}+672 q^{10}-460 q^9-1421 q^8-1593 q^7-911 q^6+284 q^5+1403 q^4+1723 q^3+1113 q^2-125 q-1358-1784 q^{-1} -1228 q^{-2} +3 q^{-3} +1281 q^{-4} +1788 q^{-5} +1300 q^{-6} +89 q^{-7} -1221 q^{-8} -1778 q^{-9} -1318 q^{-10} -135 q^{-11} +1171 q^{-12} +1745 q^{-13} +1319 q^{-14} +163 q^{-15} -1133 q^{-16} -1720 q^{-17} -1309 q^{-18} -173 q^{-19} +1103 q^{-20} +1689 q^{-21} +1291 q^{-22} +187 q^{-23} -1064 q^{-24} -1655 q^{-25} -1278 q^{-26} -208 q^{-27} +1010 q^{-28} +1608 q^{-29} +1266 q^{-30} +250 q^{-31} -934 q^{-32} -1544 q^{-33} -1252 q^{-34} -313 q^{-35} +818 q^{-36} +1456 q^{-37} +1250 q^{-38} +398 q^{-39} -679 q^{-40} -1339 q^{-41} -1222 q^{-42} -503 q^{-43} +484 q^{-44} +1189 q^{-45} +1197 q^{-46} +617 q^{-47} -285 q^{-48} -1000 q^{-49} -1117 q^{-50} -717 q^{-51} +45 q^{-52} +762 q^{-53} +1020 q^{-54} +791 q^{-55} +171 q^{-56} -512 q^{-57} -842 q^{-58} -798 q^{-59} -377 q^{-60} +236 q^{-61} +635 q^{-62} +751 q^{-63} +500 q^{-64} +10 q^{-65} -380 q^{-66} -617 q^{-67} -557 q^{-68} -209 q^{-69} +139 q^{-70} +428 q^{-71} +514 q^{-72} +321 q^{-73} +77 q^{-74} -220 q^{-75} -402 q^{-76} -337 q^{-77} -211 q^{-78} +28 q^{-79} +238 q^{-80} +277 q^{-81} +260 q^{-82} +108 q^{-83} -88 q^{-84} -164 q^{-85} -227 q^{-86} -163 q^{-87} -23 q^{-88} +42 q^{-89} +146 q^{-90} +154 q^{-91} +79 q^{-92} +34 q^{-93} -63 q^{-94} -94 q^{-95} -63 q^{-96} -76 q^{-97} -12 q^{-98} +41 q^{-99} +37 q^{-100} +64 q^{-101} +22 q^{-102} +4 q^{-103} +15 q^{-104} -33 q^{-105} -32 q^{-106} -18 q^{-107} -23 q^{-108} +8 q^{-109} +2 q^{-110} +4 q^{-111} +37 q^{-112} +12 q^{-113} +6 q^{-114} -20 q^{-116} -7 q^{-117} -13 q^{-118} -15 q^{-119} +7 q^{-120} +9 q^{-121} +12 q^{-122} +12 q^{-123} -5 q^{-124} + q^{-125} -3 q^{-126} -10 q^{-127} -3 q^{-128} -2 q^{-129} +4 q^{-130} +6 q^{-131} - q^{-132} +2 q^{-134} -2 q^{-135} - q^{-136} -2 q^{-137} + q^{-138} +2 q^{-139} - q^{-140} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




