9 43

From Knot Atlas
Jump to navigationJump to search

9 42.gif

9_42

9 44.gif

9_44

9 43.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 43's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 43 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X15,1,16,18 X11,17,12,16 X17,13,18,12 X6,14,7,13
Gauss code 1, -4, 3, -1, 2, -9, 5, -3, 4, -2, -7, 8, 9, -5, -6, 7, -8, 6
Dowker-Thistlethwaite code 4 8 10 14 2 -16 6 -18 -12
Conway Notation [211,3,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

9 43 ML.gif 9 43 AP.gif
[{5, 10}, {9, 1}, {10, 8}, {6, 9}, {4, 7}, {3, 6}, {2, 5}, {1, 4}, {7, 2}, {8, 3}]

[edit Notes on presentations of 9 43]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,5\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-10]
Hyperbolic Volume 5.90409
A-Polynomial See Data:9 43/A-polynomial

[edit Notes for 9 43's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for 9 43's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+3 t^2-2 t+1-2 t^{-1} +3 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-3 z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 13, 4 }
Jones polynomial [math]\displaystyle{ -q^7+2 q^6-2 q^5+2 q^4-2 q^3+2 q^2-q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} +z^4 a^{-2} -5 z^4 a^{-4} +z^4 a^{-6} +4 z^2 a^{-2} -7 z^2 a^{-4} +4 z^2 a^{-6} +3 a^{-2} -4 a^{-4} +3 a^{-6} - a^{-8} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^7 a^{-3} +z^7 a^{-5} +z^6 a^{-2} +3 z^6 a^{-4} +2 z^6 a^{-6} -4 z^5 a^{-3} -3 z^5 a^{-5} +z^5 a^{-7} -5 z^4 a^{-2} -13 z^4 a^{-4} -8 z^4 a^{-6} +3 z^3 a^{-3} +z^3 a^{-5} -2 z^3 a^{-7} +7 z^2 a^{-2} +14 z^2 a^{-4} +9 z^2 a^{-6} +2 z^2 a^{-8} +z a^{-7} +z a^{-9} -3 a^{-2} -4 a^{-4} -3 a^{-6} - a^{-8} }[/math]
The A2 invariant [math]\displaystyle{ 1+ q^{-2} + q^{-4} + q^{-6} -2 q^{-12} + q^{-18} + q^{-20} - q^{-26} }[/math]
The G2 invariant [math]\displaystyle{ q^{-2} +2 q^{-6} - q^{-8} + q^{-10} + q^{-12} - q^{-14} +4 q^{-16} - q^{-18} +2 q^{-20} + q^{-22} - q^{-24} +3 q^{-26} - q^{-30} +2 q^{-32} - q^{-34} +2 q^{-38} -3 q^{-40} +2 q^{-42} -2 q^{-44} - q^{-48} -3 q^{-50} + q^{-52} -3 q^{-54} + q^{-56} -2 q^{-58} - q^{-64} + q^{-66} - q^{-68} +2 q^{-72} +3 q^{-78} -2 q^{-80} +4 q^{-82} +2 q^{-88} -2 q^{-90} +2 q^{-92} - q^{-100} - q^{-102} + q^{-104} - q^{-106} - q^{-108} - q^{-112} - q^{-116} + q^{-120} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n12,}

Vassiliev invariants

V2 and V3: (1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{254}{3} }[/math] [math]\displaystyle{ \frac{82}{3} }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ \frac{1024}{3} }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 80 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1016}{3} }[/math] [math]\displaystyle{ \frac{328}{3} }[/math] [math]\displaystyle{ \frac{37231}{30} }[/math] [math]\displaystyle{ -\frac{154}{5} }[/math] [math]\displaystyle{ \frac{31502}{45} }[/math] [math]\displaystyle{ \frac{593}{18} }[/math] [math]\displaystyle{ \frac{2671}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of 9 43. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345χ
15       1-1
13      1 1
11     11 0
9    11  0
7   11   0
5  11    0
3 12     1
1        0
-11       1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials