9_42 is Alexander Stoimenow's favourite knot!
Alsacian chair, alsacian museum, Strasbourg, France
|
|
Knot presentations
| Planar diagram presentation
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17
|
| Gauss code
|
-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8
|
| Dowker-Thistlethwaite code
|
4 8 10 -14 2 -16 -18 -6 -12
|
| Conway Notation
|
[22,3,2-]
|
| Minimum Braid Representative
|
A Morse Link Presentation
|
An Arc Presentation
|
Length is 9, width is 4,
Braid index is 4
|
|
 [{11, 2}, {1, 9}, {10, 5}, {9, 11}, {8, 4}, {2, 7}, {6, 8}, {7, 10}, {5, 3}, {4, 1}, {3, 6}]
|
[edit Notes on presentations of 9 42]
|
|
|
A part of a knot and a part of a graph.
|
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["9 42"];
|
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X16,12,17,11 X14,7,15,8 X6,15,7,16 X18,14,1,13 X12,18,13,17
|
Out[5]=
|
-1, 4, -3, 1, -2, -7, 6, 3, -4, 2, 5, -9, 8, -6, 7, -5, 9, -8
|
Out[6]=
|
4 8 10 -14 2 -16 -18 -6 -12
|
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
|
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
|
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
In[11]:=
|
Show[BraidPlot[br]]
|
In[12]:=
|
Show[DrawMorseLink[K]]
|
|
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 2}, {1, 9}, {10, 5}, {9, 11}, {8, 4}, {2, 7}, {6, 8}, {7, 10}, {5, 3}, {4, 1}, {3, 6}]
|
Four dimensional invariants
Polynomial invariants
| Alexander polynomial |
 |
| Conway polynomial |
 |
| 2nd Alexander ideal (db, data sources) |
 |
| Determinant and Signature |
{ 7, 2 } |
| Jones polynomial |
 |
| HOMFLY-PT polynomial (db, data sources) |
 |
| Kauffman polynomial (db, data sources) |
 |
| The A2 invariant |
 |
| The G2 invariant |
 |
Further Quantum Invariants
Further quantum knot invariants for 9_42.
A1 Invariants.
| Weight
|
Invariant
|
| 1
|
|
| 2
|
|
| 3
|
|
| 4
|
|
| 5
|
|
A2 Invariants.
| Weight
|
Invariant
|
| 1,0
|
|
| 1,1
|
|
| 2,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}+q^{26}+q^{24}-q^{18}-q^{16}-2 q^{14}-2 q^{12}-q^{10}+q^8+3 q^6+2 q^4+3 q^2+2+ q^{-2} - q^{-4} - q^{-6} - q^{-8} - q^{-10} + q^{-16} + q^{-20} - q^{-22} - q^{-24} + q^{-28} + q^{-30} }
|
A3 Invariants.
| Weight
|
Invariant
|
| 0,1,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}+q^{16}+q^{14}+q^{12}-q^4- q^{-4} + q^{-12} + q^{-14} + q^{-16} + q^{-20} }
|
| 1,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{13}+q^{11}+2 q^9+q^7-q^3-2 q-2 q^{-1} - q^{-3} + q^{-7} +2 q^{-9} + q^{-11} + q^{-13} }
|
A4 Invariants.
| Weight
|
Invariant
|
| 0,1,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}+q^{24}+2 q^{22}+2 q^{20}+2 q^{18}+q^{16}-2 q^{12}-3 q^{10}-3 q^8-2 q^6-q^4+q^2+4+4 q^{-2} +3 q^{-4} +2 q^{-6} -3 q^{-10} -3 q^{-12} -3 q^{-14} -2 q^{-16} +2 q^{-20} +3 q^{-22} +2 q^{-24} +2 q^{-26} + q^{-28} - q^{-32} }
|
| 1,0,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}+q^{14}+2 q^{12}+2 q^{10}+q^8-q^4-2 q^2-3-2 q^{-2} - q^{-4} + q^{-8} +2 q^{-10} +2 q^{-12} + q^{-14} + q^{-16} }
|
B2 Invariants.
| Weight
|
Invariant
|
| 0,1
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}+q^{16}+q^{14}+q^{12}-q^4-2- q^{-4} + q^{-12} + q^{-14} + q^{-16} + q^{-20} }
|
| 1,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}+q^{26}+q^{18}-q^{14}+1- q^{-14} + q^{-18} + q^{-26} + q^{-34} }
|
D4 Invariants.
| Weight
|
Invariant
|
| 1,0,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}+q^{22}+q^{20}+2 q^{18}+q^{16}+q^{14}+q^{12}-q^6-q^4-2 q^2-2 q^{-2} - q^{-4} - q^{-6} + q^{-12} + q^{-14} + q^{-16} +2 q^{-18} + q^{-20} + q^{-22} + q^{-26} }
|
G2 Invariants.
| Weight
|
Invariant
|
| 1,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}+q^{42}+2 q^{32}+q^{26}+q^{24}+q^{22}+q^{20}-q^{18}+q^{16}+q^{14}-q^{12}+q^{10}-q^8-q^4-2 q^2-1- q^{-2} - q^{-4} -2 q^{-6} - q^{-8} - q^{-10} + q^{-12} - q^{-14} - q^{-16} + q^{-20} + q^{-22} + q^{-24} + q^{-26} +3 q^{-30} + q^{-34} + q^{-36} + q^{-40} + q^{-46} - q^{-50} - q^{-54} + q^{-56} - q^{-60} + q^{-62} }
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["9 42"];
|
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}}
):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["9 42"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^2+2 t-1+2 t^{-1} - t^{-2} }
, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-q^2+q-1+ q^{-1} - q^{-2} + q^{-3} }
}
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
| V2,1 through V6,9:
|
| V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 42. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-4 | -3 | -2 | -1 | 0 | 1 | 2 | χ |
| 7 | | | | | | | 1 | 1 |
| 5 | | | | | | | | 0 |
| 3 | | | | | 1 | 1 | | 0 |
| 1 | | | | 1 | 1 | | | 0 |
| -1 | | | | 1 | 1 | | | 0 |
| -3 | | 1 | 1 | | | | | 0 |
| -5 | | | | | | | | 0 |
| -7 | 1 | | | | | | | 1 |
|
The Coloured Jones Polynomials