In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 111]] |
Out[2]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[8, 14, 9, 13],
X[2, 10, 3, 9], X[18, 12, 19, 11], X[16, 5, 17, 6], X[4, 17, 5, 18],
X[20, 16, 1, 15], X[12, 20, 13, 19]] |
In[3]:= | GaussCode[Knot[10, 111]] |
Out[3]= | GaussCode[1, -5, 2, -8, 7, -1, 3, -4, 5, -2, 6, -10, 4, -3, 9, -7, 8,
-6, 10, -9] |
In[4]:= | DTCode[Knot[10, 111]] |
Out[4]= | DTCode[6, 10, 16, 14, 2, 18, 8, 20, 4, 12] |
In[5]:= | br = BR[Knot[10, 111]] |
Out[5]= | BR[4, {1, 1, 2, 2, -3, 2, 2, -1, 2, -3, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 111]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 111]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 111]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 111]][t] |
Out[10]= | 2 9 17 2 3
21 - -- + -- - -- - 17 t + 9 t - 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 111]][z] |
Out[11]= | 2 4 6
1 + z - 3 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 111]} |
In[13]:= | {KnotDet[Knot[10, 111]], KnotSignature[Knot[10, 111]]} |
Out[13]= | {77, 4} |
In[14]:= | Jones[Knot[10, 111]][q] |
Out[14]= | 2 3 4 5 6 7 8 9
1 - 3 q + 7 q - 9 q + 12 q - 13 q + 12 q - 10 q + 6 q - 3 q +
10
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 111]} |
In[16]:= | A2Invariant[Knot[10, 111]][q] |
Out[16]= | 2 4 6 8 10 12 14 18 20 22
1 - q + q + 2 q - q + 4 q - q + q - 3 q + q - 3 q +
24 26 28 30
q + q - q + q |
In[17]:= | HOMFLYPT[Knot[10, 111]][a, z] |
Out[17]= | 2 2 2 2 4 4 4 4
-8 3 2 -2 2 z 4 z z 2 z z 3 z 2 z z
a - -- + -- + a + ---- - ---- + -- + ---- + -- - ---- - ---- + -- -
6 4 8 6 4 2 8 6 4 2
a a a a a a a a a a
6 6
z z
-- - --
6 4
a a |
In[18]:= | Kauffman[Knot[10, 111]][a, z] |
Out[18]= | 2 2 2
-8 3 2 -2 4 z 10 z 7 z z z z 3 z
a + -- + -- - a - --- - ---- - --- - -- - --- + --- - ---- -
6 4 9 7 5 3 12 10 8
a a a a a a a a a
2 2 2 3 3 3 3 3 4
10 z 2 z 3 z 3 z 13 z 30 z 19 z 5 z z
----- - ---- + ---- - ---- + ----- + ----- + ----- + ---- + --- -
6 4 2 11 9 7 5 3 12
a a a a a a a a a
4 4 4 4 4 5 5 5 5
5 z 10 z 22 z 3 z 3 z 3 z 13 z 28 z 20 z
---- + ----- + ----- + ---- - ---- + ---- - ----- - ----- - ----- -
10 8 6 4 2 11 9 7 5
a a a a a a a a a
5 6 6 6 6 6 7 7 7 7
8 z 5 z 11 z 26 z 9 z z 7 z 7 z 3 z 3 z
---- + ---- - ----- - ----- - ---- + -- + ---- + ---- + ---- + ---- +
3 10 8 6 4 2 9 7 5 3
a a a a a a a a a a
8 8 8 9 9
6 z 10 z 4 z 2 z 2 z
---- + ----- + ---- + ---- + ----
8 6 4 7 5
a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 111]], Vassiliev[3][Knot[10, 111]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 111]][q, t] |
Out[20]= | 3
3 5 1 2 q q 5 7 7 2 9 2
5 q + 3 q + ---- + --- + -- + 5 q t + 4 q t + 7 q t + 5 q t +
2 t t
q t
9 3 11 3 11 4 13 4 13 5 15 5
6 q t + 7 q t + 6 q t + 6 q t + 4 q t + 6 q t +
15 6 17 6 17 7 19 7 21 8
2 q t + 4 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 111], 2][q] |
Out[21]= | -2 3 2 3 4 5 6 7
1 + q - - + 11 q - 17 q - 7 q + 44 q - 32 q - 39 q + 86 q -
q
8 9 10 11 12 13 14
27 q - 86 q + 113 q - 4 q - 122 q + 114 q + 22 q -
15 16 17 18 19 20 21
129 q + 88 q + 37 q - 98 q + 47 q + 31 q - 49 q +
22 23 24 25 26 27 28
16 q + 13 q - 15 q + 5 q + 2 q - 3 q + q |