In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 17]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 17]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[10, 13, 5, 14], X[8, 15, 9, 16],
X[14, 7, 15, 8], X[16, 9, 11, 10], X[2, 5, 3, 6], X[4, 11, 1, 12]] |
In[4]:= | GaussCode[Link[8, Alternating, 17]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {7, -1, 5, -4, 6, -3}, {8, -2, 3, -5, 4, -6}] |
In[5]:= | BR[Link[8, Alternating, 17]] |
Out[5]= | BR[Link[8, Alternating, 17]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 17]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 17]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 17]], KnotSignature[Link[8, Alternating, 17]]} |
Out[9]= | {Infinity, -4} |
In[10]:= | J=Jones[Link[8, Alternating, 17]][q] |
Out[10]= | -10 2 4 4 6 4 4 2 -2
q - -- + -- - -- + -- - -- + -- - -- + q
9 8 7 6 5 4 3
q q q q q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 17]][q] |
Out[12]= | -32 2 -28 3 3 3 5 3 4 -14 -10
q + --- + q + --- + --- + --- + --- + --- + --- + q + q -
30 26 24 22 20 18 16
q q q q q q q
-8 -6
q + q |
In[13]:= | Kauffman[Link[8, Alternating, 17]][a, z] |
Out[13]= | 6 8 10 7 9
6 8 10 12 a 2 a a 2 a 2 a 7
-5 a - 8 a - 3 a + a + -- + ---- + --- - ---- - ---- + 6 a z +
2 2 2 z z
z z z
9 4 2 6 2 8 2 10 2 12 2
6 a z - 2 a z + 10 a z + 15 a z + a z - 2 a z -
5 3 7 3 9 3 11 3 4 4 6 4 8 4
3 a z - 6 a z - 6 a z - 3 a z + a z - 8 a z - 12 a z -
10 4 12 4 5 5 7 5 9 5 11 5
2 a z + a z + 2 a z + 2 a z + 2 a z + 2 a z +
6 6 8 6 10 6 7 7 9 7
3 a z + 5 a z + 2 a z + a z + a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 17]], Vassiliev[3][Link[8, Alternating, 17]]} |
Out[14]= | 100
{0, ---}
3 |
In[15]:= | Kh[Link[8, Alternating, 17]][q, t] |
Out[15]= | -5 -3 1 1 1 3 3 3
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
21 8 19 7 17 7 17 6 15 6 15 5
q t q t q t q t q t q t
1 3 4 2 2 2 2 2
------ + ------ + ------ + ------ + ----- + ----- + ----- + ----
13 5 13 4 11 4 11 3 9 3 9 2 7 2 5
q t q t q t q t q t q t q t q t |