In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 13]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 13]] |
Out[3]= | PD[X[10, 1, 11, 2], X[16, 7, 9, 8], X[12, 3, 13, 4], X[6, 13, 7, 14],
X[14, 5, 15, 6], X[4, 15, 5, 16], X[2, 9, 3, 10], X[8, 11, 1, 12]] |
In[4]:= | GaussCode[Link[8, Alternating, 13]] |
Out[4]= | GaussCode[{1, -7, 3, -6, 5, -4, 2, -8}, {7, -1, 8, -3, 4, -5, 6, -2}] |
In[5]:= | BR[Link[8, Alternating, 13]] |
Out[5]= | BR[Link[8, Alternating, 13]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 13]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 13]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 13]], KnotSignature[Link[8, Alternating, 13]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[8, Alternating, 13]][q] |
Out[10]= | -(19/2) -(17/2) 3 4 4 4 4 2
-q + q - ----- + ----- - ----- + ---- - ---- + ---- -
15/2 13/2 11/2 9/2 7/2 5/2
q q q q q q
-(3/2)
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 13]][q] |
Out[12]= | -30 -28 -26 3 -22 -16 -14 -10 -8 -6 -4
q + q + q + --- + q - q + q + q + q - q + q
24
q |
In[13]:= | Kauffman[Link[8, Alternating, 13]][a, z] |
Out[13]= | 7 9
8 a a 3 5 7 9 11 4 2
a - -- - -- + a z - 3 a z + 3 a z + 3 a z - 4 a z + a z -
z z
8 2 3 3 5 3 7 3 9 3 11 3 4 4
a z - a z + 4 a z - a z - 2 a z + 4 a z - 2 a z +
6 4 8 4 10 4 5 5 9 5 11 5 6 6
a z + 5 a z + 2 a z - 3 a z + 2 a z - a z - 2 a z -
8 6 10 6 7 7 9 7
3 a z - a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 13]], Vassiliev[3][Link[8, Alternating, 13]]} |
Out[14]= | 281
{0, -(---)}
12 |
In[15]:= | Kh[Link[8, Alternating, 13]][q, t] |
Out[15]= | -4 -2 1 1 1 2 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
20 8 18 8 18 7 16 6 14 6 14 5
q t q t q t q t q t q t
2 2 2 2 2 2 2 2
------ + ------ + ------ + ------ + ----- + ----- + ----- + ----
12 5 12 4 10 4 10 3 8 3 8 2 6 2 4
q t q t q t q t q t q t q t q t |