L8a13
|
|
|
|
Visit L8a13's page at Knotilus!
Visit L8a13's page at the original Knot Atlas! |
| L8a13 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^2_{4}}
in the Rolfsen table of links.
Contains two L4a1 configurations. |
|
Knot presentations
| Planar diagram presentation | X10,1,11,2 X16,7,9,8 X12,3,13,4 X6,13,7,14 X14,5,15,6 X4,15,5,16 X2,9,3,10 X8,11,1,12 |
| Gauss code | {1, -7, 3, -6, 5, -4, 2, -8}, {7, -1, 8, -3, 4, -5, 6, -2} |
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(1)+t(2)) \left(t(2) t(1)^2+t(2)^2 t(1)-2 t(2) t(1)+t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{1}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{4}{q^{13/2}}-\frac{4}{q^{11/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z a^9+a^9 z^{-1} -z^3 a^7-z a^7-a^7 z^{-1} -2 z^3 a^5-3 z a^5-z^3 a^3-z a^3} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^{11}+4 z^3 a^{11}-4 z a^{11}-z^6 a^{10}+2 z^4 a^{10}-z^7 a^9+2 z^5 a^9-2 z^3 a^9+3 z a^9-a^9 z^{-1} -3 z^6 a^8+5 z^4 a^8-z^2 a^8+a^8-z^7 a^7-z^3 a^7+3 z a^7-a^7 z^{-1} -2 z^6 a^6+z^4 a^6-3 z^5 a^5+4 z^3 a^5-3 z a^5-2 z^4 a^4+z^2 a^4-z^3 a^3+z a^3} (db) |
Vassiliev invariants
| V2 and V3: | (0, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{281}{12}} ) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -3 is the signature of L8a13. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[8, Alternating, 13]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 13]] |
Out[3]= | PD[X[10, 1, 11, 2], X[16, 7, 9, 8], X[12, 3, 13, 4], X[6, 13, 7, 14], X[14, 5, 15, 6], X[4, 15, 5, 16], X[2, 9, 3, 10], X[8, 11, 1, 12]] |
In[4]:= | GaussCode[Link[8, Alternating, 13]] |
Out[4]= | GaussCode[{1, -7, 3, -6, 5, -4, 2, -8}, {7, -1, 8, -3, 4, -5, 6, -2}] |
In[5]:= | BR[Link[8, Alternating, 13]] |
Out[5]= | BR[Link[8, Alternating, 13]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 13]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 13]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 13]], KnotSignature[Link[8, Alternating, 13]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[8, Alternating, 13]][q] |
Out[10]= | -(19/2) -(17/2) 3 4 4 4 4 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 13]][q] |
Out[12]= | -30 -28 -26 3 -22 -16 -14 -10 -8 -6 -4 |
In[13]:= | Kauffman[Link[8, Alternating, 13]][a, z] |
Out[13]= | 7 98 a a 3 5 7 9 11 4 2 |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 13]], Vassiliev[3][Link[8, Alternating, 13]]} |
Out[14]= | 281 |
In[15]:= | Kh[Link[8, Alternating, 13]][q, t] |
Out[15]= | -4 -2 1 1 1 2 1 2 |






