In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[7, Alternating, 7]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, Alternating, 7]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 12, 9, 11], X[8, 14, 5, 13],
X[12, 8, 13, 7], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[7, Alternating, 7]] |
Out[4]= | GaussCode[{1, -6, 2, -7}, {6, -1, 5, -4}, {7, -2, 3, -5, 4, -3}] |
In[5]:= | BR[Link[7, Alternating, 7]] |
Out[5]= | BR[Link[7, Alternating, 7]] |
In[6]:= | alex = Alexander[Link[7, Alternating, 7]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, Alternating, 7]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, Alternating, 7]], KnotSignature[Link[7, Alternating, 7]]} |
Out[9]= | {Infinity, 0} |
In[10]:= | J=Jones[Link[7, Alternating, 7]][q] |
Out[10]= | -4 -3 4 3 2 3
4 + q - q + -- - - - 3 q + 3 q - q
2 q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, Alternating, 7]][q] |
Out[12]= | -14 2 2 5 5 4 4 2 6 8 10
1 + q + --- + --- + -- + -- + -- + -- + 2 q + q + q - q
12 10 8 6 4 2
q q q q q q |
In[13]:= | Kauffman[Link[7, Alternating, 7]][a, z] |
Out[13]= | 2 4 3
2 4 -2 2 a a 2 a 2 a 3
3 + 5 a + 3 a - z - ---- - -- + --- + ---- - 3 a z - 3 a z -
2 2 z z
z z
2 3 3 4
2 3 z 2 2 4 2 z 3 z 3 4 3 z
5 z - ---- - 5 a z - 3 a z + -- - ---- - 4 a z + 3 z + ---- +
2 3 a 2
a a a
5
2 4 4 4 3 z 5 3 5 6 2 6
a z + a z + ---- + 4 a z + a z + z + a z
a |
In[14]:= | {Vassiliev[2][Link[7, Alternating, 7]], Vassiliev[3][Link[7, Alternating, 7]]} |
Out[14]= | 11
{0, --}
6 |
In[15]:= | Kh[Link[7, Alternating, 7]][q, t] |
Out[15]= | 4 1 1 1 3 1 3 3
- + 3 q + ----- + ----- + ----- + ----- + ----- + --- + 2 q t + q t +
q 9 4 7 4 7 3 5 2 3 2 q t
q t q t q t q t q t
3 2 5 2 7 3
q t + 2 q t + q t |