L7a7
|
|
|
|
Visit L7a7's page at Knotilus!
Visit L7a7's page at the original Knot Atlas! |
| L7a7 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7^3_1} in the Rolfsen table of links. |
Knot presentations
| Planar diagram presentation | X6172 X10,3,11,4 X14,12,9,11 X8,14,5,13 X12,8,13,7 X2536 X4,9,1,10 |
| Gauss code | {1, -6, 2, -7}, {6, -1, 5, -4}, {7, -2, 3, -5, 4, -3} |
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u v w+u (-v)-u w+2 u-2 v w+v+w-1}{\sqrt{u} \sqrt{v} \sqrt{w}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} -q^3- q^{-3} +3 q^2+4 q^{-2} -3 q-3 q^{-1} +4} (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4 z^{-2} +a^4-2 z^2 a^2-2 a^2 z^{-2} -3 a^2+z^4+2 z^2+ z^{-2} +2-z^2 a^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^6+z^6+a^3 z^5+4 a z^5+3 z^5 a^{-1} +a^4 z^4+a^2 z^4+3 z^4 a^{-2} +3 z^4-4 a z^3-3 z^3 a^{-1} +z^3 a^{-3} -3 a^4 z^2-5 a^2 z^2-3 z^2 a^{-2} -5 z^2-3 a^3 z-3 a z+3 a^4+5 a^2+3+2 a^3 z^{-1} +2 a z^{-1} -a^4 z^{-2} -2 a^2 z^{-2} - z^{-2} } (db) |
Vassiliev invariants
| V2 and V3: | (0, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{11}{6}} ) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of L7a7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[7, Alternating, 7]] |
Out[2]= | 7 |
In[3]:= | PD[Link[7, Alternating, 7]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 12, 9, 11], X[8, 14, 5, 13], X[12, 8, 13, 7], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[7, Alternating, 7]] |
Out[4]= | GaussCode[{1, -6, 2, -7}, {6, -1, 5, -4}, {7, -2, 3, -5, 4, -3}] |
In[5]:= | BR[Link[7, Alternating, 7]] |
Out[5]= | BR[Link[7, Alternating, 7]] |
In[6]:= | alex = Alexander[Link[7, Alternating, 7]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[7, Alternating, 7]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[7, Alternating, 7]], KnotSignature[Link[7, Alternating, 7]]} |
Out[9]= | {Infinity, 0} |
In[10]:= | J=Jones[Link[7, Alternating, 7]][q] |
Out[10]= | -4 -3 4 3 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[7, Alternating, 7]][q] |
Out[12]= | -14 2 2 5 5 4 4 2 6 8 10 |
In[13]:= | Kauffman[Link[7, Alternating, 7]][a, z] |
Out[13]= | 2 4 32 4 -2 2 a a 2 a 2 a 3 |
In[14]:= | {Vassiliev[2][Link[7, Alternating, 7]], Vassiliev[3][Link[7, Alternating, 7]]} |
Out[14]= | 11 |
In[15]:= | Kh[Link[7, Alternating, 7]][q, t] |
Out[15]= | 4 1 1 1 3 1 3 3 |


