In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 6]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 6]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[16, 8, 5, 7], X[14, 10, 15, 9],
X[10, 14, 11, 13], X[8, 16, 9, 15], X[2, 5, 3, 6], X[4, 11, 1, 12]] |
In[4]:= | GaussCode[Link[8, Alternating, 6]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {7, -1, 3, -6, 4, -5, 8, -2, 5, -4, 6, -3}] |
In[5]:= | BR[Link[8, Alternating, 6]] |
Out[5]= | BR[Link[8, Alternating, 6]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 6]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 6]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 6]], KnotSignature[Link[8, Alternating, 6]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[8, Alternating, 6]][q] |
Out[10]= | -(9/2) -(7/2) 3 3 4 3/2
-q + q - ---- + ---- - ------- + 3 Sqrt[q] - 2 q +
5/2 3/2 Sqrt[q]
q q
5/2 7/2
2 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 6]][q] |
Out[12]= | -16 2 -12 2 2 -4 4 8 12
1 + q + --- + q + --- + -- + q - q - q + q
14 10 8
q q q |
In[13]:= | Kauffman[Link[8, Alternating, 6]][a, z] |
Out[13]= | 3 5 2 3
4 a a z 3 5 2 5 z 3 z
a - -- - -- - -- + a z + 2 a z + 2 a z - 5 z - ---- + ---- -
z z 3 2 3
a a a
4 5 5
3 3 3 5 3 4 7 z 4 4 z 2 z 5
3 a z - a z - a z + 8 z + ---- - a z - -- + ---- + 2 a z -
2 3 a
a a
6 7
3 5 6 2 z 2 6 z 7
a z - 3 z - ---- - a z - -- - a z
2 a
a |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 6]], Vassiliev[3][Link[8, Alternating, 6]]} |
Out[14]= | 41
{0, -(--)}
24 |
In[15]:= | Kh[Link[8, Alternating, 6]][q, t] |
Out[15]= | 3 1 1 1 2 1 1 2
2 + -- + ------ + ----- + ----- + ----- + ----- + ---- + ---- + t +
2 10 4 8 4 8 3 6 2 4 2 4 2
q q t q t q t q t q t q t q t
2 2 2 4 2 4 3 6 3 8 4
2 q t + q t + q t + q t + q t + q t |