L8a5
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a5 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^2_{11}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a5's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X14,8,15,7 X16,10,5,9 X8,16,9,15 X10,14,11,13 X2536 X4,11,1,12 |
| Gauss code | {1, -7, 2, -8}, {7, -1, 3, -5, 4, -6, 8, -2, 6, -3, 5, -4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1) t(2)^3-2 t(2)^3-2 t(1) t(2)^2+2 t(2)^2+2 t(1) t(2)-2 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{9/2}+3 q^{7/2}-4 q^{5/2}+5 q^{3/2}-5 \sqrt{q}+\frac{4}{\sqrt{q}}-\frac{4}{q^{3/2}}+\frac{1}{q^{5/2}}-\frac{1}{q^{7/2}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{-1} -2 a z^3+3 z^3 a^{-1} -z^3 a^{-3} +a^3 z-5 a z+3 z a^{-1} -z a^{-3} +2 a^3 z^{-1} -3 a z^{-1} + a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a z^7-z^7 a^{-1} -a^2 z^6-3 z^6 a^{-2} -4 z^6-a^3 z^5-3 z^5 a^{-1} -4 z^5 a^{-3} +a^2 z^4+2 z^4 a^{-2} -3 z^4 a^{-4} +6 z^4+4 a^3 z^3+5 a z^3+6 z^3 a^{-1} +4 z^3 a^{-3} -z^3 a^{-5} +3 a^2 z^2+z^2 a^{-2} +2 z^2 a^{-4} +2 z^2-5 a^3 z-6 a z-2 z a^{-1} -z a^{-3} -3 a^2- a^{-2} -3+2 a^3 z^{-1} +3 a z^{-1} + a^{-1} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



