L8a4
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a4 is [math]\displaystyle{ 8^2_{12} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a4's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,10,13,9 X16,13,5,14 X14,7,15,8 X8,15,9,16 X2536 X4,12,1,11 |
| Gauss code | {1, -7, 2, -8}, {7, -1, 5, -6, 3, -2, 8, -3, 4, -5, 6, -4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1)^3}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{5/2}-3 q^{3/2}+4 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{5}{q^{3/2}}-\frac{6}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{2}{q^{9/2}}+\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^5-a^5 z^{-1} +2 z^3 a^3+4 z a^3+3 a^3 z^{-1} -z^5 a-3 z^3 a-4 z a-2 a z^{-1} +z^3 a^{-1} +z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^3 z^7-a z^7-2 a^4 z^6-5 a^2 z^6-3 z^6-2 a^5 z^5-4 a^3 z^5-5 a z^5-3 z^5 a^{-1} -a^6 z^4+5 a^2 z^4-z^4 a^{-2} +3 z^4+3 a^5 z^3+9 a^3 z^3+11 a z^3+5 z^3 a^{-1} +2 a^6 z^2+4 a^4 z^2+2 a^2 z^2+z^2 a^{-2} +z^2-2 a^5 z-7 a^3 z-7 a z-2 z a^{-1} -a^6-3 a^4-3 a^2+a^5 z^{-1} +3 a^3 z^{-1} +2 a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



