L8a3
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a3 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a3's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,8,15,7 X16,11,5,12 X12,15,13,16 X8,14,9,13 X2536 X4,9,1,10 |
| Gauss code | {1, -7, 2, -8}, {7, -1, 3, -6, 8, -2, 4, -5, 6, -3, 5, -4} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 u v^2-4 u v+u+v^3-4 v^2+2 v}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{4}{q^{9/2}}+\frac{4}{q^{7/2}}-\frac{5}{q^{5/2}}-q^{3/2}+\frac{5}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}+2 \sqrt{q}-\frac{4}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 z^{-1} -3 z a^5-2 a^5 z^{-1} +2 z^3 a^3+3 z a^3+2 a^3 z^{-1} +z^3 a-z a-a z^{-1} -z a^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^7+3 z^3 a^7-3 z a^7+a^7 z^{-1} -2 z^6 a^6+5 z^4 a^6-2 z^2 a^6-z^7 a^5-2 z^5 a^5+11 z^3 a^5-8 z a^5+2 a^5 z^{-1} -5 z^6 a^4+11 z^4 a^4-6 z^2 a^4+a^4-z^7 a^3-4 z^5 a^3+12 z^3 a^3-9 z a^3+2 a^3 z^{-1} -3 z^6 a^2+4 z^4 a^2-3 z^2 a^2-3 z^5 a+3 z^3 a-3 z a+a z^{-1} -2 z^4+z^2-z^3 a^{-1} +z a^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



