T(16,3)
|
|
Visit [[[:Template:KnotilusURL]] T(16,3)'s page] at Knotilus!
Visit T(16,3)'s page at the original Knot Atlas! | |
T(16,3) Quick Notes |
T(16,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X41,63,42,62 X20,64,21,63 X21,43,22,42 X64,44,1,43 X1,23,2,22 X44,24,45,23 X45,3,46,2 X24,4,25,3 X25,47,26,46 X4,48,5,47 X5,27,6,26 X48,28,49,27 X49,7,50,6 X28,8,29,7 X29,51,30,50 X8,52,9,51 X9,31,10,30 X52,32,53,31 X53,11,54,10 X32,12,33,11 X33,55,34,54 X12,56,13,55 X13,35,14,34 X56,36,57,35 X57,15,58,14 X36,16,37,15 X37,59,38,58 X16,60,17,59 X17,39,18,38 X60,40,61,39 X61,19,62,18 X40,20,41,19 |
Gauss code | -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -28, -29, 31, 32, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 1, 2, -4 |
Dowker-Thistlethwaite code | 22 -24 26 -28 30 -32 34 -36 38 -40 42 -44 46 -48 50 -52 54 -56 58 -60 62 -64 2 -4 6 -8 10 -12 14 -16 18 -20 |
Conway Notation | Data:T(16,3)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(16,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 22 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(16,3)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(16,3)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (85, 680) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 22 is the signature of T(16,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[16, 3]] |
Out[2]= | 32 |
In[3]:= | PD[TorusKnot[16, 3]] |
Out[3]= | PD[X[41, 63, 42, 62], X[20, 64, 21, 63], X[21, 43, 22, 42],X[64, 44, 1, 43], X[1, 23, 2, 22], X[44, 24, 45, 23], X[45, 3, 46, 2], X[24, 4, 25, 3], X[25, 47, 26, 46], X[4, 48, 5, 47], X[5, 27, 6, 26], X[48, 28, 49, 27], X[49, 7, 50, 6], X[28, 8, 29, 7], X[29, 51, 30, 50], X[8, 52, 9, 51], X[9, 31, 10, 30], X[52, 32, 53, 31], X[53, 11, 54, 10], X[32, 12, 33, 11], X[33, 55, 34, 54], X[12, 56, 13, 55], X[13, 35, 14, 34], X[56, 36, 57, 35], X[57, 15, 58, 14], X[36, 16, 37, 15], X[37, 59, 38, 58], X[16, 60, 17, 59], X[17, 39, 18, 38],X[60, 40, 61, 39], X[61, 19, 62, 18], X[40, 20, 41, 19]] |
In[4]:= | GaussCode[TorusKnot[16, 3]] |
Out[4]= | GaussCode[-5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25,26, -28, -29, 31, 32, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 1, 2,-4] |
In[5]:= | BR[TorusKnot[16, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[16, 3]][t] |
Out[6]= | -15 -14 -12 -11 |
In[7]:= | Conway[TorusKnot[16, 3]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[16, 3]], KnotSignature[TorusKnot[16, 3]]} |
Out[9]= | {3, 22} |
In[10]:= | J=Jones[TorusKnot[16, 3]][q] |
Out[10]= | 15 17 32 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[16, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[16, 3]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[16, 3]], Vassiliev[3][TorusKnot[16, 3]]} |
Out[14]= | {0, 680} |
In[15]:= | Kh[TorusKnot[16, 3]][q, t] |
Out[15]= | 29 31 2 33 4 35 3 37 |