K11a84
|
|
|
|
Visit K11a84's page at Knotilus!
Visit K11a84's page at the original Knot Atlas! |
| K11a84 Quick Notes |
K11a84 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X12,5,13,6 X16,8,17,7 X2,10,3,9 X22,11,1,12 X20,13,21,14 X18,15,19,16 X6,18,7,17 X14,19,15,20 X8,21,9,22 |
| Gauss code | 1, -5, 2, -1, 3, -9, 4, -11, 5, -2, 6, -3, 7, -10, 8, -4, 9, -8, 10, -7, 11, -6 |
| Dowker-Thistlethwaite code | 4 10 12 16 2 22 20 18 6 14 8 |
| Conway Notation | [232112] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -2 t^3+10 t^2-23 t+31-23 t^{-1} +10 t^{-2} -2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -2 z^6-2 z^4-z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 101, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+3 q^4-6 q^3+11 q^2-14 q+16-16 q^{-1} +14 q^{-2} -10 q^{-3} +6 q^{-4} -3 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^6-z^6+a^4 z^4-3 a^2 z^4+2 z^4 a^{-2} -2 z^4+2 a^4 z^2-4 a^2 z^2+4 z^2 a^{-2} -z^2 a^{-4} -2 z^2+a^4-a^2+3 a^{-2} - a^{-4} -1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^{10}+z^{10}+3 a^3 z^9+6 a z^9+3 z^9 a^{-1} +4 a^4 z^8+6 a^2 z^8+4 z^8 a^{-2} +6 z^8+3 a^5 z^7-3 a^3 z^7-10 a z^7+4 z^7 a^{-3} +a^6 z^6-10 a^4 z^6-18 a^2 z^6-z^6 a^{-2} +3 z^6 a^{-4} -11 z^6-9 a^5 z^5-4 a^3 z^5+9 a z^5-z^5 a^{-1} -4 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+7 a^4 z^4+18 a^2 z^4-8 z^4 a^{-2} -6 z^4 a^{-4} +6 z^4+7 a^5 z^3+3 a^3 z^3-7 a z^3-3 z^3 a^{-1} -2 z^3 a^{-3} -2 z^3 a^{-5} +2 a^6 z^2-3 a^4 z^2-9 a^2 z^2+9 z^2 a^{-2} +4 z^2 a^{-4} +z^2-a^5 z+2 a z+2 z a^{-1} +2 z a^{-3} +z a^{-5} +a^4+a^2-3 a^{-2} - a^{-4} -1 }[/math] |
| The A2 invariant | Data:K11a84/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a84/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a84"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -2 t^3+10 t^2-23 t+31-23 t^{-1} +10 t^{-2} -2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -2 z^6-2 z^4-z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 101, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+3 q^4-6 q^3+11 q^2-14 q+16-16 q^{-1} +14 q^{-2} -10 q^{-3} +6 q^{-4} -3 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^6-z^6+a^4 z^4-3 a^2 z^4+2 z^4 a^{-2} -2 z^4+2 a^4 z^2-4 a^2 z^2+4 z^2 a^{-2} -z^2 a^{-4} -2 z^2+a^4-a^2+3 a^{-2} - a^{-4} -1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^{10}+z^{10}+3 a^3 z^9+6 a z^9+3 z^9 a^{-1} +4 a^4 z^8+6 a^2 z^8+4 z^8 a^{-2} +6 z^8+3 a^5 z^7-3 a^3 z^7-10 a z^7+4 z^7 a^{-3} +a^6 z^6-10 a^4 z^6-18 a^2 z^6-z^6 a^{-2} +3 z^6 a^{-4} -11 z^6-9 a^5 z^5-4 a^3 z^5+9 a z^5-z^5 a^{-1} -4 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+7 a^4 z^4+18 a^2 z^4-8 z^4 a^{-2} -6 z^4 a^{-4} +6 z^4+7 a^5 z^3+3 a^3 z^3-7 a z^3-3 z^3 a^{-1} -2 z^3 a^{-3} -2 z^3 a^{-5} +2 a^6 z^2-3 a^4 z^2-9 a^2 z^2+9 z^2 a^{-2} +4 z^2 a^{-4} +z^2-a^5 z+2 a z+2 z a^{-1} +2 z a^{-3} +z a^{-5} +a^4+a^2-3 a^{-2} - a^{-4} -1 }[/math] |
Vassiliev invariants
| V2 and V3: | (-1, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a84. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 84]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 84]] |
Out[3]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 5, 13, 6], X[16, 8, 17, 7],X[2, 10, 3, 9], X[22, 11, 1, 12], X[20, 13, 21, 14], X[18, 15, 19, 16], X[6, 18, 7, 17], X[14, 19, 15, 20],X[8, 21, 9, 22]] |
In[4]:= | GaussCode[Knot[11, Alternating, 84]] |
Out[4]= | GaussCode[1, -5, 2, -1, 3, -9, 4, -11, 5, -2, 6, -3, 7, -10, 8, -4, 9, -8, 10, -7, 11, -6] |
In[5]:= | BR[Knot[11, Alternating, 84]] |
Out[5]= | BR[Knot[11, Alternating, 84]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 84]][t] |
Out[6]= | 2 10 23 2 3 |
In[7]:= | Conway[Knot[11, Alternating, 84]][z] |
Out[7]= | 2 4 6 1 - z - 2 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 119], Knot[11, Alternating, 84]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 84]], KnotSignature[Knot[11, Alternating, 84]]} |
Out[9]= | {101, 0} |
In[10]:= | J=Jones[Knot[11, Alternating, 84]][q] |
Out[10]= | -6 3 6 10 14 16 2 3 4 5 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 84], Knot[11, Alternating, 88]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 84]][q] |
Out[12]= | -18 -16 -14 -12 3 3 -6 -4 -2 2 |
In[13]:= | Kauffman[Knot[11, Alternating, 84]][a, z] |
Out[13]= | 2-4 3 2 4 z 2 z 2 z 5 2 4 z |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 84]], Vassiliev[3][Knot[11, Alternating, 84]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[11, Alternating, 84]][q, t] |
Out[15]= | 8 1 2 1 4 2 6 4 |


