K11a83
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X12,5,13,6 X16,8,17,7 X2,10,3,9 X22,11,1,12 X18,14,19,13 X20,16,21,15 X8,18,9,17 X14,20,15,19 X6,21,7,22 |
| Gauss code | 1, -5, 2, -1, 3, -11, 4, -9, 5, -2, 6, -3, 7, -10, 8, -4, 9, -7, 10, -8, 11, -6 |
| Dowker-Thistlethwaite code | 4 10 12 16 2 22 18 20 8 14 6 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-5 t^3+14 t^2-23 t+27-23 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+3 z^6+4 z^4+4 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 113, 4 } |
| Jones polynomial | [math]\displaystyle{ q^{10}-4 q^9+8 q^8-13 q^7+16 q^6-18 q^5+18 q^4-14 q^3+11 q^2-6 q+3- q^{-1} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +6 z^6 a^{-4} -2 z^6 a^{-6} -4 z^4 a^{-2} +15 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} -5 z^2 a^{-2} +18 z^2 a^{-4} -11 z^2 a^{-6} +2 z^2 a^{-8} -2 a^{-2} +8 a^{-4} -6 a^{-6} + a^{-8} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-4} +z^{10} a^{-6} +3 z^9 a^{-3} +8 z^9 a^{-5} +5 z^9 a^{-7} +3 z^8 a^{-2} +9 z^8 a^{-4} +16 z^8 a^{-6} +10 z^8 a^{-8} +z^7 a^{-1} -6 z^7 a^{-3} -13 z^7 a^{-5} +5 z^7 a^{-7} +11 z^7 a^{-9} -12 z^6 a^{-2} -41 z^6 a^{-4} -51 z^6 a^{-6} -14 z^6 a^{-8} +8 z^6 a^{-10} -4 z^5 a^{-1} -6 z^5 a^{-3} -15 z^5 a^{-5} -32 z^5 a^{-7} -15 z^5 a^{-9} +4 z^5 a^{-11} +16 z^4 a^{-2} +52 z^4 a^{-4} +50 z^4 a^{-6} +6 z^4 a^{-8} -7 z^4 a^{-10} +z^4 a^{-12} +5 z^3 a^{-1} +16 z^3 a^{-3} +31 z^3 a^{-5} +29 z^3 a^{-7} +7 z^3 a^{-9} -2 z^3 a^{-11} -9 z^2 a^{-2} -29 z^2 a^{-4} -24 z^2 a^{-6} -3 z^2 a^{-8} +z^2 a^{-10} -2 z a^{-1} -7 z a^{-3} -13 z a^{-5} -9 z a^{-7} -z a^{-9} +2 a^{-2} +8 a^{-4} +6 a^{-6} + a^{-8} }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^2+1-2 q^{-2} + q^{-4} +2 q^{-6} - q^{-8} +6 q^{-10} - q^{-12} +3 q^{-14} -3 q^{-18} + q^{-20} -4 q^{-22} + q^{-24} - q^{-28} + q^{-30} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{12}-2 q^{10}+6 q^8-11 q^6+14 q^4-16 q^2+5+17 q^{-2} -48 q^{-4} +80 q^{-6} -97 q^{-8} +78 q^{-10} -21 q^{-12} -76 q^{-14} +181 q^{-16} -251 q^{-18} +249 q^{-20} -156 q^{-22} -17 q^{-24} +210 q^{-26} -357 q^{-28} +399 q^{-30} -297 q^{-32} +94 q^{-34} +147 q^{-36} -324 q^{-38} +373 q^{-40} -270 q^{-42} +74 q^{-44} +147 q^{-46} -278 q^{-48} +274 q^{-50} -123 q^{-52} -99 q^{-54} +309 q^{-56} -392 q^{-58} +321 q^{-60} -100 q^{-62} -190 q^{-64} +437 q^{-66} -552 q^{-68} +482 q^{-70} -243 q^{-72} -79 q^{-74} +363 q^{-76} -518 q^{-78} +481 q^{-80} -289 q^{-82} +13 q^{-84} +217 q^{-86} -334 q^{-88} +287 q^{-90} -121 q^{-92} -84 q^{-94} +234 q^{-96} -259 q^{-98} +151 q^{-100} +31 q^{-102} -219 q^{-104} +327 q^{-106} -315 q^{-108} +199 q^{-110} -15 q^{-112} -164 q^{-114} +283 q^{-116} -310 q^{-118} +249 q^{-120} -130 q^{-122} - q^{-124} +106 q^{-126} -168 q^{-128} +173 q^{-130} -136 q^{-132} +81 q^{-134} -17 q^{-136} -29 q^{-138} +53 q^{-140} -62 q^{-142} +51 q^{-144} -32 q^{-146} +15 q^{-148} + q^{-150} -8 q^{-152} +10 q^{-154} -10 q^{-156} +6 q^{-158} -3 q^{-160} + q^{-162} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a83"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-5 t^3+14 t^2-23 t+27-23 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+3 z^6+4 z^4+4 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 113, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^{10}-4 q^9+8 q^8-13 q^7+16 q^6-18 q^5+18 q^4-14 q^3+11 q^2-6 q+3- q^{-1} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +6 z^6 a^{-4} -2 z^6 a^{-6} -4 z^4 a^{-2} +15 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} -5 z^2 a^{-2} +18 z^2 a^{-4} -11 z^2 a^{-6} +2 z^2 a^{-8} -2 a^{-2} +8 a^{-4} -6 a^{-6} + a^{-8} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-4} +z^{10} a^{-6} +3 z^9 a^{-3} +8 z^9 a^{-5} +5 z^9 a^{-7} +3 z^8 a^{-2} +9 z^8 a^{-4} +16 z^8 a^{-6} +10 z^8 a^{-8} +z^7 a^{-1} -6 z^7 a^{-3} -13 z^7 a^{-5} +5 z^7 a^{-7} +11 z^7 a^{-9} -12 z^6 a^{-2} -41 z^6 a^{-4} -51 z^6 a^{-6} -14 z^6 a^{-8} +8 z^6 a^{-10} -4 z^5 a^{-1} -6 z^5 a^{-3} -15 z^5 a^{-5} -32 z^5 a^{-7} -15 z^5 a^{-9} +4 z^5 a^{-11} +16 z^4 a^{-2} +52 z^4 a^{-4} +50 z^4 a^{-6} +6 z^4 a^{-8} -7 z^4 a^{-10} +z^4 a^{-12} +5 z^3 a^{-1} +16 z^3 a^{-3} +31 z^3 a^{-5} +29 z^3 a^{-7} +7 z^3 a^{-9} -2 z^3 a^{-11} -9 z^2 a^{-2} -29 z^2 a^{-4} -24 z^2 a^{-6} -3 z^2 a^{-8} +z^2 a^{-10} -2 z a^{-1} -7 z a^{-3} -13 z a^{-5} -9 z a^{-7} -z a^{-9} +2 a^{-2} +8 a^{-4} +6 a^{-6} + a^{-8} }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a83"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-5 t^3+14 t^2-23 t+27-23 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^{10}-4 q^9+8 q^8-13 q^7+16 q^6-18 q^5+18 q^4-14 q^3+11 q^2-6 q+3- q^{-1} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (4, 6) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a83. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



