K11a82
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X12,5,13,6 X16,8,17,7 X2,10,3,9 X22,11,1,12 X18,13,19,14 X20,15,21,16 X6,18,7,17 X14,19,15,20 X8,21,9,22 |
| Gauss code | 1, -5, 2, -1, 3, -9, 4, -11, 5, -2, 6, -3, 7, -10, 8, -4, 9, -7, 10, -8, 11, -6 |
| Dowker-Thistlethwaite code | 4 10 12 16 2 22 18 20 6 14 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6-2 z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 95, -2 } |
| Jones polynomial | [math]\displaystyle{ -q^4+3 q^3-6 q^2+10 q-12+15 q^{-1} -15 q^{-2} +13 q^{-3} -10 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-14 a^2 z^4-z^4 a^{-2} +9 z^4+5 a^4 z^2-15 a^2 z^2-3 z^2 a^{-2} +13 z^2+2 a^4-6 a^2-2 a^{-2} +7 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^{10}+z^{10}+4 a^3 z^9+7 a z^9+3 z^9 a^{-1} +7 a^4 z^8+11 a^2 z^8+3 z^8 a^{-2} +7 z^8+7 a^5 z^7-15 a z^7-7 z^7 a^{-1} +z^7 a^{-3} +5 a^6 z^6-14 a^4 z^6-43 a^2 z^6-12 z^6 a^{-2} -36 z^6+3 a^7 z^5-12 a^5 z^5-21 a^3 z^5-6 a z^5-4 z^5 a^{-1} -4 z^5 a^{-3} +a^8 z^4-5 a^6 z^4+14 a^4 z^4+51 a^2 z^4+15 z^4 a^{-2} +46 z^4-3 a^7 z^3+11 a^5 z^3+28 a^3 z^3+22 a z^3+13 z^3 a^{-1} +5 z^3 a^{-3} -a^8 z^2+a^6 z^2-7 a^4 z^2-27 a^2 z^2-8 z^2 a^{-2} -26 z^2-4 a^5 z-10 a^3 z-10 a z-6 z a^{-1} -2 z a^{-3} +2 a^4+6 a^2+2 a^{-2} +7 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{20}-q^{18}+2 q^{16}-q^{14}-q^{12}+q^{10}-4 q^8+2 q^6-2 q^4+2 q^2+3+3 q^{-4} - q^{-6} - q^{-12} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+5 q^{106}-3 q^{104}-2 q^{102}+10 q^{100}-17 q^{98}+24 q^{96}-27 q^{94}+19 q^{92}-7 q^{90}-13 q^{88}+37 q^{86}-55 q^{84}+66 q^{82}-62 q^{80}+39 q^{78}-q^{76}-44 q^{74}+91 q^{72}-119 q^{70}+122 q^{68}-90 q^{66}+26 q^{64}+56 q^{62}-124 q^{60}+166 q^{58}-152 q^{56}+86 q^{54}+9 q^{52}-103 q^{50}+148 q^{48}-128 q^{46}+50 q^{44}+54 q^{42}-134 q^{40}+144 q^{38}-84 q^{36}-38 q^{34}+161 q^{32}-239 q^{30}+217 q^{28}-113 q^{26}-48 q^{24}+202 q^{22}-291 q^{20}+282 q^{18}-182 q^{16}+24 q^{14}+130 q^{12}-230 q^{10}+246 q^8-165 q^6+40 q^4+89 q^2-159+157 q^{-2} -70 q^{-4} -45 q^{-6} +148 q^{-8} -183 q^{-10} +139 q^{-12} -24 q^{-14} -108 q^{-16} +209 q^{-18} -228 q^{-20} +170 q^{-22} -58 q^{-24} -69 q^{-26} +156 q^{-28} -184 q^{-30} +152 q^{-32} -79 q^{-34} - q^{-36} +56 q^{-38} -81 q^{-40} +72 q^{-42} -47 q^{-44} +19 q^{-46} +3 q^{-48} -15 q^{-50} +14 q^{-52} -11 q^{-54} +6 q^{-56} -2 q^{-58} + q^{-60} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a82"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6-2 z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 95, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^4+3 q^3-6 q^2+10 q-12+15 q^{-1} -15 q^{-2} +13 q^{-3} -10 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-14 a^2 z^4-z^4 a^{-2} +9 z^4+5 a^4 z^2-15 a^2 z^2-3 z^2 a^{-2} +13 z^2+2 a^4-6 a^2-2 a^{-2} +7 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^{10}+z^{10}+4 a^3 z^9+7 a z^9+3 z^9 a^{-1} +7 a^4 z^8+11 a^2 z^8+3 z^8 a^{-2} +7 z^8+7 a^5 z^7-15 a z^7-7 z^7 a^{-1} +z^7 a^{-3} +5 a^6 z^6-14 a^4 z^6-43 a^2 z^6-12 z^6 a^{-2} -36 z^6+3 a^7 z^5-12 a^5 z^5-21 a^3 z^5-6 a z^5-4 z^5 a^{-1} -4 z^5 a^{-3} +a^8 z^4-5 a^6 z^4+14 a^4 z^4+51 a^2 z^4+15 z^4 a^{-2} +46 z^4-3 a^7 z^3+11 a^5 z^3+28 a^3 z^3+22 a z^3+13 z^3 a^{-1} +5 z^3 a^{-3} -a^8 z^2+a^6 z^2-7 a^4 z^2-27 a^2 z^2-8 z^2 a^{-2} -26 z^2-4 a^5 z-10 a^3 z-10 a z-6 z a^{-1} -2 z a^{-3} +2 a^4+6 a^2+2 a^{-2} +7 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_116, K11a7, K11a33,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a33,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a82"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^4+3 q^3-6 q^2+10 q-12+15 q^{-1} -15 q^{-2} +13 q^{-3} -10 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_116, K11a7, K11a33,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a33,} |
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a82. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



