K11a7
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8394 X10,6,11,5 X16,8,17,7 X2,9,3,10 X18,11,19,12 X20,13,21,14 X6,16,7,15 X22,17,1,18 X12,19,13,20 X14,21,15,22 |
| Gauss code | 1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -10, 7, -11, 8, -4, 9, -6, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 10 16 2 18 20 6 22 12 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6-2 z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 95, -2 } |
| Jones polynomial | [math]\displaystyle{ q^3-3 q^2+6 q-9+13 q^{-1} -15 q^{-2} +15 q^{-3} -13 q^{-4} +10 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^8+2 a^4 z^6-6 a^2 z^6+z^6-a^6 z^4+9 a^4 z^4-14 a^2 z^4+4 z^4-3 a^6 z^2+13 a^4 z^2-15 a^2 z^2+5 z^2-2 a^6+6 a^4-6 a^2+3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^4 z^{10}+a^2 z^{10}+3 a^5 z^9+7 a^3 z^9+4 a z^9+4 a^6 z^8+7 a^4 z^8+8 a^2 z^8+5 z^8+4 a^7 z^7-2 a^5 z^7-19 a^3 z^7-10 a z^7+3 z^7 a^{-1} +3 a^8 z^6-4 a^6 z^6-26 a^4 z^6-37 a^2 z^6+z^6 a^{-2} -17 z^6+a^9 z^5-5 a^7 z^5+a^5 z^5+21 a^3 z^5+5 a z^5-9 z^5 a^{-1} -6 a^8 z^4+a^6 z^4+41 a^4 z^4+55 a^2 z^4-3 z^4 a^{-2} +18 z^4-2 a^9 z^3-a^7 z^3-2 a^5 z^3-6 a^3 z^3+2 a z^3+5 z^3 a^{-1} +3 a^8 z^2-4 a^6 z^2-27 a^4 z^2-31 a^2 z^2+z^2 a^{-2} -10 z^2+a^9 z+a^7 z-a z-z a^{-1} +2 a^6+6 a^4+6 a^2+3 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{24}-q^{18}+3 q^{16}-q^{14}+2 q^{12}+q^{10}-2 q^8+2 q^6-4 q^4+2 q^2+2 q^{-4} - q^{-6} + q^{-8} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{128}-2 q^{126}+5 q^{124}-8 q^{122}+8 q^{120}-6 q^{118}-2 q^{116}+16 q^{114}-29 q^{112}+41 q^{110}-42 q^{108}+27 q^{106}-2 q^{104}-37 q^{102}+75 q^{100}-101 q^{98}+101 q^{96}-76 q^{94}+20 q^{92}+47 q^{90}-112 q^{88}+160 q^{86}-165 q^{84}+125 q^{82}-45 q^{80}-57 q^{78}+139 q^{76}-178 q^{74}+161 q^{72}-85 q^{70}-16 q^{68}+105 q^{66}-137 q^{64}+101 q^{62}-3 q^{60}-103 q^{58}+170 q^{56}-158 q^{54}+63 q^{52}+80 q^{50}-214 q^{48}+290 q^{46}-259 q^{44}+139 q^{42}+36 q^{40}-202 q^{38}+298 q^{36}-296 q^{34}+199 q^{32}-49 q^{30}-102 q^{28}+199 q^{26}-211 q^{24}+142 q^{22}-22 q^{20}-97 q^{18}+151 q^{16}-137 q^{14}+42 q^{12}+80 q^{10}-175 q^8+207 q^6-153 q^4+34 q^2+104-206 q^{-2} +234 q^{-4} -184 q^{-6} +82 q^{-8} +34 q^{-10} -121 q^{-12} +160 q^{-14} -140 q^{-16} +92 q^{-18} -25 q^{-20} -26 q^{-22} +52 q^{-24} -58 q^{-26} +45 q^{-28} -26 q^{-30} +10 q^{-32} +4 q^{-34} -9 q^{-36} +8 q^{-38} -7 q^{-40} +4 q^{-42} -2 q^{-44} + q^{-46} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a7"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6-2 z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 95, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^3-3 q^2+6 q-9+13 q^{-1} -15 q^{-2} +15 q^{-3} -13 q^{-4} +10 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^8+2 a^4 z^6-6 a^2 z^6+z^6-a^6 z^4+9 a^4 z^4-14 a^2 z^4+4 z^4-3 a^6 z^2+13 a^4 z^2-15 a^2 z^2+5 z^2-2 a^6+6 a^4-6 a^2+3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^4 z^{10}+a^2 z^{10}+3 a^5 z^9+7 a^3 z^9+4 a z^9+4 a^6 z^8+7 a^4 z^8+8 a^2 z^8+5 z^8+4 a^7 z^7-2 a^5 z^7-19 a^3 z^7-10 a z^7+3 z^7 a^{-1} +3 a^8 z^6-4 a^6 z^6-26 a^4 z^6-37 a^2 z^6+z^6 a^{-2} -17 z^6+a^9 z^5-5 a^7 z^5+a^5 z^5+21 a^3 z^5+5 a z^5-9 z^5 a^{-1} -6 a^8 z^4+a^6 z^4+41 a^4 z^4+55 a^2 z^4-3 z^4 a^{-2} +18 z^4-2 a^9 z^3-a^7 z^3-2 a^5 z^3-6 a^3 z^3+2 a z^3+5 z^3 a^{-1} +3 a^8 z^2-4 a^6 z^2-27 a^4 z^2-31 a^2 z^2+z^2 a^{-2} -10 z^2+a^9 z+a^7 z-a z-z a^{-1} +2 a^6+6 a^4+6 a^2+3 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_116, K11a33, K11a82,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a325,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a7"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^3-3 q^2+6 q-9+13 q^{-1} -15 q^{-2} +15 q^{-3} -13 q^{-4} +10 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_116, K11a33, K11a82,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a325,} |
Vassiliev invariants
| V2 and V3: | (0, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



