K11a8

From Knot Atlas
Jump to navigationJump to search

K11a7.gif

K11a7

K11a9.gif

K11a9

K11a8.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a8 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X10,6,11,5 X16,8,17,7 X2,9,3,10 X18,11,19,12 X20,13,21,14 X6,16,7,15 X22,17,1,18 X14,19,15,20 X12,21,13,22
Gauss code 1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -11, 7, -10, 8, -4, 9, -6, 10, -7, 11, -9
Dowker-Thistlethwaite code 4 8 10 16 2 18 20 6 22 14 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a8 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ [2,3] }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11a8's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^3+11 t^2-27 t+37-27 t^{-1} +11 t^{-2} -2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^6-z^4-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 117, 0 }
Jones polynomial [math]\displaystyle{ q^4-4 q^3+9 q^2-13 q+17-19 q^{-1} +18 q^{-2} -15 q^{-3} +11 q^{-4} -6 q^{-5} +3 q^{-6} - q^{-7} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^6-a^6+2 z^4 a^4+4 z^2 a^4+3 a^4-z^6 a^2-2 z^4 a^2-3 z^2 a^2-2 a^2-z^6-2 z^4-2 z^2+z^4 a^{-2} +z^2 a^{-2} + a^{-2} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a^4 z^{10}+a^2 z^{10}+3 a^5 z^9+8 a^3 z^9+5 a z^9+3 a^6 z^8+9 a^4 z^8+16 a^2 z^8+10 z^8+a^7 z^7-6 a^5 z^7-12 a^3 z^7+7 a z^7+12 z^7 a^{-1} -12 a^6 z^6-39 a^4 z^6-45 a^2 z^6+9 z^6 a^{-2} -9 z^6-4 a^7 z^5-5 a^5 z^5-13 a^3 z^5-32 a z^5-16 z^5 a^{-1} +4 z^5 a^{-3} +16 a^6 z^4+46 a^4 z^4+35 a^2 z^4-9 z^4 a^{-2} +z^4 a^{-4} -5 z^4+5 a^7 z^3+14 a^5 z^3+21 a^3 z^3+21 a z^3+8 z^3 a^{-1} -z^3 a^{-3} -8 a^6 z^2-20 a^4 z^2-13 a^2 z^2+4 z^2 a^{-2} +3 z^2-2 a^7 z-5 a^5 z-5 a^3 z-4 a z-2 z a^{-1} +a^6+3 a^4+2 a^2- a^{-2} }[/math]
The A2 invariant Data:K11a8/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a8/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a38, K11a187, K11a249,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{130}{3} }[/math] [math]\displaystyle{ \frac{38}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{112}{3} }[/math] [math]\displaystyle{ \frac{64}{3} }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -\frac{520}{3} }[/math] [math]\displaystyle{ -\frac{152}{3} }[/math] [math]\displaystyle{ -\frac{6991}{30} }[/math] [math]\displaystyle{ \frac{754}{5} }[/math] [math]\displaystyle{ -\frac{17702}{45} }[/math] [math]\displaystyle{ \frac{751}{18} }[/math] [math]\displaystyle{ -\frac{2191}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
9           11
7          3 -3
5         61 5
3        73  -4
1       106   4
-1      108    -2
-3     89     -1
-5    710      3
-7   48       -4
-9  27        5
-11 14         -3
-13 2          2
-151           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a7.gif

K11a7

K11a9.gif

K11a9