L9a12
|
|
|
|
Visit L9a12's page at Knotilus!
Visit L9a12's page at the original Knot Atlas! |
| L9a12 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{14}} in the Rolfsen table of links. |
Knot presentations
| Planar diagram presentation | X6172 X12,3,13,4 X18,13,5,14 X14,7,15,8 X16,9,17,10 X8,15,9,16 X10,17,11,18 X2536 X4,11,1,12 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 4, -6, 5, -7, 9, -2, 3, -4, 6, -5, 7, -3} |
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2 u v^4+2 u v^3-2 u v^2+2 u v-u-v^5+2 v^4-2 v^3+2 v^2-2 v}{\sqrt{u} v^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{4}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{23/2}}-\frac{2}{q^{21/2}}+\frac{4}{q^{19/2}}-\frac{5}{q^{17/2}}+\frac{6}{q^{15/2}}-\frac{7}{q^{13/2}}+\frac{4}{q^{11/2}}} (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{11} (-z)-2 a^{11} z^{-1} +3 a^9 z^3+9 a^9 z+5 a^9 z^{-1} -2 a^7 z^5-8 a^7 z^3-9 a^7 z-3 a^7 z^{-1} -a^5 z^5-3 a^5 z^3-a^5 z} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{14}+2 z^2 a^{14}-a^{14}-2 z^5 a^{13}+3 z^3 a^{13}-2 z^6 a^{12}+z^4 a^{12}+2 z^2 a^{12}-2 z^7 a^{11}+3 z^5 a^{11}-5 z^3 a^{11}+5 z a^{11}-2 a^{11} z^{-1} -z^8 a^{10}-z^6 a^{10}+6 z^4 a^{10}-11 z^2 a^{10}+5 a^{10}-5 z^7 a^9+17 z^5 a^9-26 z^3 a^9+16 z a^9-5 a^9 z^{-1} -z^8 a^8-z^6 a^8+9 z^4 a^8-12 z^2 a^8+5 a^8-3 z^7 a^7+11 z^5 a^7-15 z^3 a^7+10 z a^7-3 a^7 z^{-1} -2 z^6 a^6+5 z^4 a^6-z^2 a^6-z^5 a^5+3 z^3 a^5-z a^5} (db) |
Vassiliev invariants
| V2 and V3: | (0, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{367}{24}} ) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -5 is the signature of L9a12. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[9, Alternating, 12]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 12]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[18, 13, 5, 14], X[14, 7, 15, 8],X[16, 9, 17, 10], X[8, 15, 9, 16], X[10, 17, 11, 18], X[2, 5, 3, 6],X[4, 11, 1, 12]] |
In[4]:= | GaussCode[Link[9, Alternating, 12]] |
Out[4]= | GaussCode[{1, -8, 2, -9}, {8, -1, 4, -6, 5, -7, 9, -2, 3, -4, 6, -5, 7,
-3}] |
In[5]:= | BR[Link[9, Alternating, 12]] |
Out[5]= | BR[Link[9, Alternating, 12]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 12]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 12]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 12]], KnotSignature[Link[9, Alternating, 12]]} |
Out[9]= | {Infinity, -5} |
In[10]:= | J=Jones[Link[9, Alternating, 12]][q] |
Out[10]= | -(23/2) 2 4 5 6 7 4 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 12]][q] |
Out[12]= | -36 2 -32 2 -26 -24 4 2 4 2 -12 |
In[13]:= | Kauffman[Link[9, Alternating, 12]][a, z] |
Out[13]= | 7 9 118 10 14 3 a 5 a 2 a 5 7 9 |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 12]], Vassiliev[3][Link[9, Alternating, 12]]} |
Out[14]= | 367 |
In[15]:= | Kh[Link[9, Alternating, 12]][q, t] |
Out[15]= | -6 -4 1 1 1 3 1 2 |


