L9a14

From Knot Atlas
Revision as of 20:14, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L9a13.gif

L9a13

L9a15.gif

L9a15

L9a14.gif Visit L9a14's page at Knotilus!

Visit L9a14's page at the original Knot Atlas!

L9a14 is [math]\displaystyle{ 9^2_{13} }[/math] in the Rolfsen table of links.


L9a14 Further Notes and Views

Knot presentations

Planar diagram presentation X6172 X12,4,13,3 X14,8,15,7 X16,10,17,9 X18,12,5,11 X8,16,9,15 X10,18,11,17 X2536 X4,14,1,13
Gauss code {1, -8, 2, -9}, {8, -1, 3, -6, 4, -7, 5, -2, 9, -3, 6, -4, 7, -5}

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{(u-1) (v-1) \left(v^2-v+1\right) \left(v^2+v+1\right)}{\sqrt{u} v^{5/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ -4 q^{9/2}+2 q^{7/2}-3 q^{5/2}+q^{3/2}+q^{19/2}-2 q^{17/2}+3 q^{15/2}-3 q^{13/2}+4 q^{11/2}-\sqrt{q} }[/math] (db)
Signature 5 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z^5 a^{-7} +4 z^3 a^{-7} +4 z a^{-7} +2 a^{-7} z^{-1} -z^7 a^{-5} -6 z^5 a^{-5} -12 z^3 a^{-5} -11 z a^{-5} -5 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +7 z a^{-3} +3 a^{-3} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -4 z^7 a^{-5} -3 z^7 a^{-7} +4 z^6 a^{-4} +z^6 a^{-6} -3 z^6 a^{-8} +6 z^5 a^{-3} +20 z^5 a^{-5} +11 z^5 a^{-7} -3 z^5 a^{-9} -z^4 a^{-4} +8 z^4 a^{-6} +6 z^4 a^{-8} -3 z^4 a^{-10} -12 z^3 a^{-3} -30 z^3 a^{-5} -12 z^3 a^{-7} +4 z^3 a^{-9} -2 z^3 a^{-11} -8 z^2 a^{-4} -12 z^2 a^{-6} +3 z^2 a^{-10} -z^2 a^{-12} +10 z a^{-3} +17 z a^{-5} +7 z a^{-7} +5 a^{-4} +5 a^{-6} - a^{-10} -3 a^{-3} z^{-1} -5 a^{-5} z^{-1} -2 a^{-7} z^{-1} }[/math] (db)

Vassiliev invariants

V2 and V3: (0, [math]\displaystyle{ -\frac{23}{2} }[/math])
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L9a14/V 2,1 Data:L9a14/V 3,1 Data:L9a14/V 4,1 Data:L9a14/V 4,2 Data:L9a14/V 4,3 Data:L9a14/V 5,1 Data:L9a14/V 5,2 Data:L9a14/V 5,3 Data:L9a14/V 5,4 Data:L9a14/V 6,1 Data:L9a14/V 6,2 Data:L9a14/V 6,3 Data:L9a14/V 6,4 Data:L9a14/V 6,5 Data:L9a14/V 6,6 Data:L9a14/V 6,7 Data:L9a14/V 6,8 Data:L9a14/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]5 is the signature of L9a14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
20         1-1
18        1 1
16       21 -1
14      11  0
12     32   -1
10    11    0
8   13     2
6  21      1
4 13       2
2          0
01         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=4 }[/math] [math]\displaystyle{ i=6 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[9, Alternating, 14]]
Out[2]=  
9
In[3]:=
PD[Link[9, Alternating, 14]]
Out[3]=  
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 8, 15, 7], X[16, 10, 17, 9], 
 X[18, 12, 5, 11], X[8, 16, 9, 15], X[10, 18, 11, 17], X[2, 5, 3, 6], 

X[4, 14, 1, 13]]
In[4]:=
GaussCode[Link[9, Alternating, 14]]
Out[4]=  
GaussCode[{1, -8, 2, -9}, {8, -1, 3, -6, 4, -7, 5, -2, 9, -3, 6, -4, 7, 
   -5}]
In[5]:=
BR[Link[9, Alternating, 14]]
Out[5]=  
BR[Link[9, Alternating, 14]]
In[6]:=
alex = Alexander[Link[9, Alternating, 14]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[9, Alternating, 14]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[9, Alternating, 14]], KnotSignature[Link[9, Alternating, 14]]}
Out[9]=  
{Infinity, 5}
In[10]:=
J=Jones[Link[9, Alternating, 14]][q]
Out[10]=  
            3/2      5/2      7/2      9/2      11/2      13/2

-Sqrt[q] + q - 3 q + 2 q - 4 q + 4 q - 3 q +

    15/2      17/2    19/2
3 q - 2 q + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[9, Alternating, 14]][q]
Out[12]=  
 2    4      6      8      10      12    14    16      18      20

q + q + 2 q + 3 q + 3 q + 4 q + q + q - 2 q - 2 q -

  22    24    28
q - q - q
In[13]:=
Kauffman[Link[9, Alternating, 14]][a, z]
Out[13]=  
                                                            2       2
 -10   5    5     2      5      3     7 z   17 z   10 z   z     3 z

-a + -- + -- - ---- - ---- - ---- + --- + ---- + ---- - --- + ---- -

        6    4    7      5      3      7      5      3     12    10
       a    a    a  z   a  z   a  z   a      a      a     a     a

     2      2      3      3       3       3       3      4      4
 12 z    8 z    2 z    4 z    12 z    30 z    12 z    3 z    6 z
 ----- - ---- - ---- + ---- - ----- - ----- - ----- - ---- + ---- + 
   6       4     11      9      7       5       3      10      8
  a       a     a       a      a       a       a      a       a

    4    4      5       5       5      5      6    6      6      7
 8 z    z    3 z    11 z    20 z    6 z    3 z    z    4 z    3 z
 ---- - -- - ---- + ----- + ----- + ---- - ---- + -- + ---- - ---- - 
   6     4     9      7       5       3      8     6     4      7
  a     a     a      a       a       a      a     a     a      a

    7    7    8    8
 4 z    z    z    z
 ---- - -- - -- - --
   5     3    6    4
a a a a
In[14]:=
{Vassiliev[2][Link[9, Alternating, 14]], Vassiliev[3][Link[9, Alternating, 14]]}
Out[14]=  
      23

{0, -(--)}

2
In[15]:=
Kh[Link[9, Alternating, 14]][q, t]
Out[15]=  
                     4
  4      6    -2   q     6      8        8  2    10  2    10  3

3 q + 2 q + t + -- + q t + q t + 3 q t + q t + q t +

                   t

    12  3      12  4    14  4    14  5      16  5    16  6    18  6
 3 q   t  + 2 q   t  + q   t  + q   t  + 2 q   t  + q   t  + q   t  + 

  20  7
q t