In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[9, Alternating, 21]] |
Out[2]= | 9 |
In[3]:= | PD[Link[9, Alternating, 21]] |
Out[3]= | PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[14, 8, 15, 7],
X[18, 14, 7, 13], X[6, 17, 1, 18], X[16, 11, 17, 12],
X[12, 6, 13, 5], X[4, 16, 5, 15]] |
In[4]:= | GaussCode[Link[9, Alternating, 21]] |
Out[4]= | GaussCode[{1, -2, 3, -9, 8, -6},
{4, -1, 2, -3, 7, -8, 5, -4, 9, -7, 6, -5}] |
In[5]:= | BR[Link[9, Alternating, 21]] |
Out[5]= | BR[Link[9, Alternating, 21]] |
In[6]:= | alex = Alexander[Link[9, Alternating, 21]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[9, Alternating, 21]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[9, Alternating, 21]], KnotSignature[Link[9, Alternating, 21]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[9, Alternating, 21]][q] |
Out[10]= | -(11/2) 3 5 8 8 9 3/2
q - ---- + ---- - ---- + ---- - ------- + 7 Sqrt[q] - 5 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
5/2 7/2
3 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[9, Alternating, 21]][q] |
Out[12]= | -16 -14 -12 2 3 -6 4 -2 2 4 6
2 - q + q - q + --- + -- + q + -- - q - q - q + q -
10 8 4
q q q
8 10
q + q |
In[13]:= | Kauffman[Link[9, Alternating, 21]][a, z] |
Out[13]= | 3 2
2 a a 3 z 5 2 3 z 2 2 6 2
-a + - + -- + --- + 4 a z - a z - 4 z - ---- - 2 a z + a z +
z z a 2
a
3 3 4
2 z 8 z 3 3 3 5 3 4 7 z 2 4
---- - ---- - 17 a z - 3 a z + 4 a z + 6 z + ---- + 4 a z +
3 a 2
a a
5 5 6
4 4 6 4 z 10 z 5 3 5 5 5 3 z
4 a z - a z - -- + ----- + 19 a z + 5 a z - 3 a z - ---- -
3 a 2
a a
7
2 6 4 6 4 z 7 3 7 8 2 8
a z - 4 a z - ---- - 8 a z - 4 a z - 2 z - 2 a z
a |
In[14]:= | {Vassiliev[2][Link[9, Alternating, 21]], Vassiliev[3][Link[9, Alternating, 21]]} |
Out[14]= | 31
{0, --}
48 |
In[15]:= | Kh[Link[9, Alternating, 21]][q, t] |
Out[15]= | 5 1 2 1 3 2 5 4
5 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
2 12 5 10 4 8 4 8 3 6 3 6 2 4 2
q q t q t q t q t q t q t q t
4 4 2 2 2 4 2 4 3 6 3
---- + ---- + 3 t + 4 q t + 2 q t + 3 q t + q t + 2 q t +
4 2
q t q t
8 4
q t |