L9a20
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a20 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a20's Link Presentations]
| Planar diagram presentation | X8192 X16,11,17,12 X10,4,11,3 X2,15,3,16 X12,5,13,6 X6718 X14,10,15,9 X18,14,7,13 X4,18,5,17 |
| Gauss code | {1, -4, 3, -9, 5, -6}, {6, -1, 7, -3, 2, -5, 8, -7, 4, -2, 9, -8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1)^2 t(2)^4-t(1) t(2)^4-3 t(1)^2 t(2)^3+4 t(1) t(2)^3-t(2)^3+3 t(1)^2 t(2)^2-7 t(1) t(2)^2+3 t(2)^2-t(1)^2 t(2)+4 t(1) t(2)-3 t(2)-t(1)+1}{t(1) t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{7/2}+4 q^{5/2}-7 q^{3/2}+9 \sqrt{q}-\frac{12}{\sqrt{q}}+\frac{11}{q^{3/2}}-\frac{10}{q^{5/2}}+\frac{7}{q^{7/2}}-\frac{4}{q^{9/2}}+\frac{1}{q^{11/2}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^3 z^5-2 a^3 z^3+a^3 z^{-1} +a z^7+4 a z^5-z^5 a^{-1} +4 a z^3-2 z^3 a^{-1} -a z-a z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 a^2 z^8-3 z^8-7 a^3 z^7-13 a z^7-6 z^7 a^{-1} -7 a^4 z^6-6 a^2 z^6-4 z^6 a^{-2} -3 z^6-4 a^5 z^5+8 a^3 z^5+25 a z^5+12 z^5 a^{-1} -z^5 a^{-3} -a^6 z^4+8 a^4 z^4+16 a^2 z^4+7 z^4 a^{-2} +14 z^4+3 a^5 z^3-2 a^3 z^3-12 a z^3-6 z^3 a^{-1} +z^3 a^{-3} -2 a^4 z^2-6 a^2 z^2-2 z^2 a^{-2} -6 z^2-a^3 z-a z-a^2+a^3 z^{-1} +a z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



