L9a19
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a19 is [math]\displaystyle{ 9^2_{38} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a19's Link Presentations]
| Planar diagram presentation | X6172 X2,9,3,10 X12,3,13,4 X10,5,11,6 X18,11,5,12 X4,17,1,18 X16,14,17,13 X14,8,15,7 X8,16,9,15 |
| Gauss code | {1, -2, 3, -6}, {4, -1, 8, -9, 2, -4, 5, -3, 7, -8, 9, -7, 6, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^3-5 u v^2+6 u v-2 u-2 v^3+6 v^2-5 v+2}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{5/2}-4 q^{3/2}+7 \sqrt{q}-\frac{9}{\sqrt{q}}+\frac{10}{q^{3/2}}-\frac{11}{q^{5/2}}+\frac{8}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{1}{q^{13/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^3+a^5 z+a^5 z^{-1} -a^3 z^5-2 a^3 z^3-3 a^3 z-a^3 z^{-1} -a z^5-a z^3+z^3 a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^7 z^5-2 a^7 z^3+a^7 z+3 a^6 z^6-6 a^6 z^4+3 a^6 z^2+4 a^5 z^7-7 a^5 z^5+4 a^5 z^3-2 a^5 z+a^5 z^{-1} +2 a^4 z^8+4 a^4 z^6-13 a^4 z^4+7 a^4 z^2-a^4+10 a^3 z^7-18 a^3 z^5+10 a^3 z^3-3 a^3 z+a^3 z^{-1} +2 a^2 z^8+8 a^2 z^6-17 a^2 z^4+z^4 a^{-2} +6 a^2 z^2+6 a z^7-6 a z^5+4 z^5 a^{-1} +a z^3-3 z^3 a^{-1} +7 z^6-9 z^4+2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



