The A2 Invariant

From Knot Atlas
Revision as of 19:44, 27 August 2005 by 69.156.15.171 (talk)
Jump to navigationJump to search


We compute the (or quantum ) invariant using the normalization and formulas of [Khovanov], which in itself follows [Kuperberg]:

(For In[1] see Setup)

In[1]:= ?A2Invariant

A2Invariant[L][q] computes the A2 (sl(3)) invariant of a knot or link L as a function of the variable q.

As an example, let us check that the knots 10_22 and 10_35 have the same Jones polynomial but different invariants:

In[2]:=
Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]
Out[2]=
True
In[3]:=
A2Invariant[Knot[10, 22]][q]
Out[3]=
      -12    -8    -6    -4   2     4      6    8    10    12    14    18
-1 + q    + q   + q   - q   + -- - q  - 2 q  + q  - q   + q   + q   + q
                               2
                              q
In[4]:=
A2Invariant[Knot[10, 35]][q]
Out[4]=
 -14    -12    -10    -8   2    2     2    6    8      10    14    16    18    20
q    + q    - q    + q   - -- + -- + q  - q  + q  - 2 q   + q   - q   + q   + q
                            4    2
                           q    q

The invariant attains 2163 values on the 2226 knots and links known to KnotTheory:

In[5]:=
all = Join[AllKnots[], AllLinks[]];
In[6]:=
Length /@ {Union[A2Invariant[#][q]& /@ all], all}
Out[6]=
{2163, 2226}

[Khovanov] ^  M. Khovanov, link homology I, arXiv:math.QA/0304375.

[Kuperberg] ^  G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109-151, arXiv:q-alg/9712003.