T(16,3)
|
|
|
|
See other torus knots |
| Edit T(16,3) Quick Notes
|
Edit T(16,3) Further Notes and Views
Knot presentations
| Planar diagram presentation | X41,63,42,62 X20,64,21,63 X21,43,22,42 X64,44,1,43 X1,23,2,22 X44,24,45,23 X45,3,46,2 X24,4,25,3 X25,47,26,46 X4,48,5,47 X5,27,6,26 X48,28,49,27 X49,7,50,6 X28,8,29,7 X29,51,30,50 X8,52,9,51 X9,31,10,30 X52,32,53,31 X53,11,54,10 X32,12,33,11 X33,55,34,54 X12,56,13,55 X13,35,14,34 X56,36,57,35 X57,15,58,14 X36,16,37,15 X37,59,38,58 X16,60,17,59 X17,39,18,38 X60,40,61,39 X61,19,62,18 X40,20,41,19 |
| Gauss code | -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -28, -29, 31, 32, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 1, 2, -4 |
| Dowker-Thistlethwaite code | 22 -24 26 -28 30 -32 34 -36 38 -40 42 -44 46 -48 50 -52 54 -56 58 -60 62 -64 2 -4 6 -8 10 -12 14 -16 18 -20 |
| Braid presentation |
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^{15}-t^{14}+t^{12}-t^{11}+t^9-t^8+t^6-t^5+t^3-t^2+1- t^{-2} + t^{-3} - t^{-5} + t^{-6} - t^{-8} + t^{-9} - t^{-11} + t^{-12} - t^{-14} + t^{-15} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^{30}+29 z^{28}+377 z^{26}+2901 z^{24}+14697 z^{22}+51589 z^{20}+128593 z^{18}+229517 z^{16}+292077 z^{14}+260729 z^{12}+158389 z^{10}+62305 z^8+14637 z^6+1785 z^4+85 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 3, 22 } |
| Jones polynomial | [math]\displaystyle{ -q^{32}+q^{17}+q^{15} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | Data:T(16,3)/HOMFLYPT Polynomial |
| Kauffman polynomial (db, data sources) | Data:T(16,3)/Kauffman Polynomial |
| The A2 invariant | Data:T(16,3)/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:T(16,3)/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(16,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^{15}-t^{14}+t^{12}-t^{11}+t^9-t^8+t^6-t^5+t^3-t^2+1- t^{-2} + t^{-3} - t^{-5} + t^{-6} - t^{-8} + t^{-9} - t^{-11} + t^{-12} - t^{-14} + t^{-15} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^{30}+29 z^{28}+377 z^{26}+2901 z^{24}+14697 z^{22}+51589 z^{20}+128593 z^{18}+229517 z^{16}+292077 z^{14}+260729 z^{12}+158389 z^{10}+62305 z^8+14637 z^6+1785 z^4+85 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 22 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^{32}+q^{17}+q^{15} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(16,3)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(16,3)/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["T(16,3)"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^{15}-t^{14}+t^{12}-t^{11}+t^9-t^8+t^6-t^5+t^3-t^2+1- t^{-2} + t^{-3} - t^{-5} + t^{-6} - t^{-8} + t^{-9} - t^{-11} + t^{-12} - t^{-14} + t^{-15} }[/math], [math]\displaystyle{ -q^{32}+q^{17}+q^{15} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (85, 680) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]22 is the signature of T(16,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|


