T(8,5)
[[Image:T(31,2).{{{ext}}}|80px|link=T(31,2)]] |
[[Image:T(16,3).{{{ext}}}|80px|link=T(16,3)]] |
Visit T(8,5)'s page at Knotilus!
Visit T(8,5)'s page at the original Knot Atlas! |
T(8,5) Further Notes and Views
Knot presentations
Planar diagram presentation | X54,16,55,15 X29,17,30,16 X4,18,5,17 X43,19,44,18 X30,56,31,55 X5,57,6,56 X44,58,45,57 X19,59,20,58 X6,32,7,31 X45,33,46,32 X20,34,21,33 X59,35,60,34 X46,8,47,7 X21,9,22,8 X60,10,61,9 X35,11,36,10 X22,48,23,47 X61,49,62,48 X36,50,37,49 X11,51,12,50 X62,24,63,23 X37,25,38,24 X12,26,13,25 X51,27,52,26 X38,64,39,63 X13,1,14,64 X52,2,53,1 X27,3,28,2 X14,40,15,39 X53,41,54,40 X28,42,29,41 X3,43,4,42 |
Gauss code | {27, 28, -32, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -2, -5, 9, 10, 11, 12, -16, -19, -22, -25, 29, 30, 31, 32, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26} |
Dowker-Thistlethwaite code | 52 -42 -56 46 60 -50 -64 54 4 -58 -8 62 12 -2 -16 6 20 -10 -24 14 28 -18 -32 22 36 -26 -40 30 44 -34 -48 38 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(8,5)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 20 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(8,5)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(8,5)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3 | {0, 420} |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 20 is the signature of T(8,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | χ | |||||||||
57 | 1 | 1 | 0 | |||||||||||||||||||||||||||
55 | 1 | 1 | 0 | |||||||||||||||||||||||||||
53 | 1 | 2 | 1 | 0 | ||||||||||||||||||||||||||
51 | 1 | 3 | 1 | -1 | ||||||||||||||||||||||||||
49 | 1 | 2 | 1 | 1 | -1 | |||||||||||||||||||||||||
47 | 3 | 2 | -1 | |||||||||||||||||||||||||||
45 | 3 | 2 | -1 | |||||||||||||||||||||||||||
43 | 2 | 2 | 0 | |||||||||||||||||||||||||||
41 | 1 | 1 | 2 | 0 | ||||||||||||||||||||||||||
39 | 1 | 1 | 2 | 0 | ||||||||||||||||||||||||||
37 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
35 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
33 | 1 | 1 | ||||||||||||||||||||||||||||
31 | 1 | 1 | ||||||||||||||||||||||||||||
29 | 1 | 1 | ||||||||||||||||||||||||||||
27 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[8, 5]] |
Out[2]= | 32 |
In[3]:= | PD[TorusKnot[8, 5]] |
Out[3]= | PD[X[54, 16, 55, 15], X[29, 17, 30, 16], X[4, 18, 5, 17],X[43, 19, 44, 18], X[30, 56, 31, 55], X[5, 57, 6, 56], X[44, 58, 45, 57], X[19, 59, 20, 58], X[6, 32, 7, 31], X[45, 33, 46, 32], X[20, 34, 21, 33], X[59, 35, 60, 34], X[46, 8, 47, 7], X[21, 9, 22, 8], X[60, 10, 61, 9], X[35, 11, 36, 10], X[22, 48, 23, 47], X[61, 49, 62, 48], X[36, 50, 37, 49], X[11, 51, 12, 50], X[62, 24, 63, 23], X[37, 25, 38, 24], X[12, 26, 13, 25], X[51, 27, 52, 26], X[38, 64, 39, 63], X[13, 1, 14, 64], X[52, 2, 53, 1], X[27, 3, 28, 2], X[14, 40, 15, 39], X[53, 41, 54, 40],X[28, 42, 29, 41], X[3, 43, 4, 42]] |
In[4]:= | GaussCode[TorusKnot[8, 5]] |
Out[4]= | GaussCode[27, 28, -32, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29,1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -2, -5, 9, 10, 11, 12, -16, -19, -22, -25, 29, 30, 31, 32, -4, -7, -10, -13, 17,18, 19, 20, -24, -27, -30, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26] |
In[5]:= | BR[TorusKnot[8, 5]] |
Out[5]= | BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}] |
In[6]:= | alex = Alexander[TorusKnot[8, 5]][t] |
Out[6]= | -14 -13 -9 -8 -6 -5 -4 -3 1 3 |
In[7]:= | Conway[TorusKnot[8, 5]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[8, 5]], KnotSignature[TorusKnot[8, 5]]} |
Out[9]= | {5, 20} |
In[10]:= | J=Jones[TorusKnot[8, 5]][q] |
Out[10]= | 14 16 18 23 25 q + q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[8, 5]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[8, 5]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[8, 5]], Vassiliev[3][TorusKnot[8, 5]]} |
Out[14]= | {0, 420} |
In[15]:= | Kh[TorusKnot[8, 5]][q, t] |
Out[15]= | 27 29 31 2 35 3 33 4 35 4 37 5 39 5 |