 (KnotPlot image)
|
See the full Rolfsen Knot Table.
Visit 5 1's page
at the Knot Server
(KnotPlot driven, includes 3D interactive images!)
Visit 5 1 at Knotilus!
|
An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]),
as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page),
as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2).
When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1
|
A kolam of a 2x3 dot array
|
The VISA Interlink Logo [1]
|
|
A pentagonal table by Bob Mackay [2]
|
The Utah State Parks logo
|
As impossible object ("Penrose" pentagram)
|
Folded ribbon which is single-sided (more complex version of Möbius Strip).
|
|
|
Alternate pentagram of intersecting circles.
|
|
Partial view of US bicentennial logo on a shirt seen in Lisboa [3]
|
Non-prime knot with two 5_1 configurations on a closed loop.
|
|
Sum of two 5_1s, Vienna, orthodox church
|
This sentence was last edited by Dror.
Sometime later, Scott added this sentence.
Knot presentations
Planar diagram presentation
|
X1627 X3849 X5,10,6,1 X7283 X9,4,10,5
|
Gauss code
|
-1, 4, -2, 5, -3, 1, -4, 2, -5, 3
|
Dowker-Thistlethwaite code
|
6 8 10 2 4
|
Conway Notation
|
[5]
|
Minimum Braid Representative
|
A Morse Link Presentation
|
An Arc Presentation
|
Length is 5, width is 2,
Braid index is 2
|
|
 [{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}]
|
[edit Notes on presentations of 5 1]
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3849 X5,10,6,1 X7283 X9,4,10,5
|
Out[5]=
|
-1, 4, -2, 5, -3, 1, -4, 2, -5, 3
|
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(2,\{-1,-1,-1,-1,-1\})}
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
In[11]:=
|
Show[BraidPlot[br]]
|
In[12]:=
|
Show[DrawMorseLink[K]]
|
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}]
|
Four dimensional invariants
Smooth 4 genus
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
|
Topological 4 genus
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
|
Concordance genus
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{ConcordanceGenus}(\textrm{Knot}(5,1))}
|
Rasmussen s-Invariant
|
-4
|
|
[edit Notes for 5 1's four dimensional invariants]
|
Polynomial invariants
Alexander polynomial |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+ t^{-2} -t- t^{-1} +1}
|
Conway polynomial |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+3 z^2+1}
|
2nd Alexander ideal (db, data sources) |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
|
Determinant and Signature |
{ 5, -4 } |
Jones polynomial |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-7} + q^{-6} - q^{-5} + q^{-4} + q^{-2} }
|
HOMFLY-PT polynomial (db, data sources) |
 |
Kauffman polynomial (db, data sources) |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^9 z+a^8 z^2+a^7 z^3-a^7 z+a^6 z^4-3 a^6 z^2+2 a^6+a^5 z^3-2 a^5 z+a^4 z^4-4 a^4 z^2+3 a^4}
|
The A2 invariant |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}-q^{20}-q^{18}+q^{14}+q^{12}+2 q^{10}+q^8+q^6}
|
The G2 invariant |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{120}-q^{100}-q^{98}-q^{92}-q^{90}-q^{88}-q^{82}-q^{80}-q^{78}-q^{72}+q^{58}+q^{56}+q^{52}+2 q^{50}+q^{48}+q^{46}+q^{44}+q^{42}+2 q^{40}+q^{38}+q^{34}+q^{32}+q^{30}}
|
Further Quantum Invariants
Further quantum knot invariants for 5_1.
A1 Invariants.
Weight
|
Invariant
|
1
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{15}+q^7+q^5+q^3}
|
2
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{40}-q^{32}-q^{30}-q^{28}+q^{14}+q^{12}+q^{10}+q^8+q^6}
|
3
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{75}+q^{67}+q^{65}+q^{63}-q^{49}-q^{47}-q^{45}-q^{43}-q^{41}+q^{21}+q^{19}+q^{17}+q^{15}+q^{13}+q^{11}+q^9}
|
4
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{120}-q^{112}-q^{110}-q^{108}+q^{94}+q^{92}+q^{90}+q^{88}+q^{86}-q^{66}-q^{64}-q^{62}-q^{60}-q^{58}-q^{56}-q^{54}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}}
|
5
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{175}+q^{167}+q^{165}+q^{163}-q^{149}-q^{147}-q^{145}-q^{143}-q^{141}+q^{121}+q^{119}+q^{117}+q^{115}+q^{113}+q^{111}+q^{109}-q^{83}-q^{81}-q^{79}-q^{77}-q^{75}-q^{73}-q^{71}-q^{69}-q^{67}+q^{35}+q^{33}+q^{31}+q^{29}+q^{27}+q^{25}+q^{23}+q^{21}+q^{19}+q^{17}+q^{15}}
|
6
|
|
8
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{400}-q^{392}-q^{390}-q^{388}+q^{374}+q^{372}+q^{370}+q^{368}+q^{366}-q^{346}-q^{344}-q^{342}-q^{340}-q^{338}-q^{336}-q^{334}+q^{308}+q^{306}+q^{304}+q^{302}+q^{300}+q^{298}+q^{296}+q^{294}+q^{292}-q^{260}-q^{258}-q^{256}-q^{254}-q^{252}-q^{250}-q^{248}-q^{246}-q^{244}-q^{242}-q^{240}+q^{202}+q^{200}+q^{198}+q^{196}+q^{194}+q^{192}+q^{190}+q^{188}+q^{186}+q^{184}+q^{182}+q^{180}+q^{178}-q^{134}-q^{132}-q^{130}-q^{128}-q^{126}-q^{124}-q^{122}-q^{120}-q^{118}-q^{116}-q^{114}-q^{112}-q^{110}-q^{108}-q^{106}+q^{56}+q^{54}+q^{52}+q^{50}+q^{48}+q^{46}+q^{44}+q^{42}+q^{40}+q^{38}+q^{36}+q^{34}+q^{32}+q^{30}+q^{28}+q^{26}+q^{24}}
|
A2 Invariants.
Weight
|
Invariant
|
1,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}-q^{20}-q^{18}+q^{14}+q^{12}+2 q^{10}+q^8+q^6}
|
1,1
|
|
2,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}+q^{52}+2 q^{50}+q^{48}-2 q^{44}-3 q^{42}-3 q^{40}-3 q^{38}-2 q^{36}-q^{34}+q^{28}+q^{26}+2 q^{24}+2 q^{22}+3 q^{20}+2 q^{18}+2 q^{16}+q^{14}+q^{12}}
|
3,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{96}-q^{94}-2 q^{92}-2 q^{90}-q^{88}+q^{86}+3 q^{84}+4 q^{82}+5 q^{80}+4 q^{78}+4 q^{76}+2 q^{74}+q^{72}-q^{70}-2 q^{68}-3 q^{66}-4 q^{64}-5 q^{62}-5 q^{60}-5 q^{58}-4 q^{56}-3 q^{54}-2 q^{52}-q^{50}+q^{42}+q^{40}+2 q^{38}+2 q^{36}+3 q^{34}+3 q^{32}+4 q^{30}+3 q^{28}+3 q^{26}+2 q^{24}+2 q^{22}+q^{20}+q^{18}}
|
A3 Invariants.
Weight
|
Invariant
|
0,1,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}-q^{36}-2 q^{34}-3 q^{32}-3 q^{30}-2 q^{28}-q^{26}+2 q^{24}+3 q^{22}+4 q^{20}+3 q^{18}+3 q^{16}+q^{14}+q^{12}}
|
1,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{29}-q^{27}-2 q^{25}-q^{23}+q^{19}+2 q^{17}+2 q^{15}+2 q^{13}+q^{11}+q^9}
|
1,0,1
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}+q^{58}+q^{56}+3 q^{54}+3 q^{52}+2 q^{50}-q^{48}-5 q^{46}-9 q^{44}-12 q^{42}-12 q^{40}-9 q^{38}-3 q^{36}+2 q^{34}+7 q^{32}+10 q^{30}+11 q^{28}+10 q^{26}+7 q^{24}+5 q^{22}+2 q^{20}+q^{18}}
|
A4 Invariants.
Weight
|
Invariant
|
0,1,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{64}+q^{62}+q^{60}+q^{58}+q^{56}-q^{50}-2 q^{48}-4 q^{46}-5 q^{44}-6 q^{42}-6 q^{40}-4 q^{38}-q^{36}+2 q^{34}+4 q^{32}+7 q^{30}+6 q^{28}+6 q^{26}+4 q^{24}+3 q^{22}+q^{20}+q^{18}}
|
1,0,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{36}-q^{34}-2 q^{32}-2 q^{30}-q^{28}+q^{24}+2 q^{22}+3 q^{20}+2 q^{18}+2 q^{16}+q^{14}+q^{12}}
|
B2 Invariants.
Weight
|
Invariant
|
0,1
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{50}-q^{36}-q^{32}-q^{30}+q^{26}+q^{22}+2 q^{20}+q^{18}+q^{16}+q^{14}+q^{12}}
|
1,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-q^{58}-q^{56}-q^{54}-q^{52}-2 q^{50}-q^{48}-q^{46}-q^{44}+q^{38}+q^{36}+2 q^{34}+q^{32}+2 q^{30}+q^{28}+2 q^{26}+q^{24}+q^{22}+q^{18}}
|
B3 Invariants.
Weight
|
Invariant
|
1,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{120}-q^{86}-q^{82}-q^{80}-2 q^{78}-q^{76}-2 q^{74}-q^{72}-2 q^{70}-q^{68}-q^{66}-q^{64}+q^{58}+q^{56}+2 q^{54}+q^{52}+3 q^{50}+q^{48}+3 q^{46}+q^{44}+2 q^{42}+q^{40}+2 q^{38}+q^{34}+q^{30}}
|
B4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{160}-q^{114}-q^{110}-2 q^{106}-q^{104}-2 q^{102}-q^{100}-2 q^{98}-q^{96}-2 q^{94}-q^{92}-2 q^{90}-q^{88}-q^{86}+q^{78}+2 q^{74}+q^{72}+3 q^{70}+q^{68}+3 q^{66}+q^{64}+3 q^{62}+q^{60}+3 q^{58}+q^{56}+2 q^{54}+2 q^{50}+q^{46}+q^{42}}
|
C3 Invariants.
Weight
|
Invariant
|
1,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{70}-q^{50}-q^{48}-q^{46}-q^{44}-q^{42}-q^{40}+q^{34}+q^{32}+2 q^{30}+2 q^{28}+2 q^{26}+q^{24}+2 q^{22}+q^{20}+q^{18}}
|
C4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{90}-q^{64}-q^{62}-2 q^{60}-q^{58}-q^{56}-q^{54}-q^{52}-q^{50}-q^{48}+q^{44}+2 q^{42}+2 q^{40}+2 q^{38}+2 q^{36}+2 q^{34}+2 q^{32}+2 q^{30}+2 q^{28}+q^{26}+q^{24}}
|
D4 Invariants.
Weight
|
Invariant
|
0,1,0,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{120}-q^{100}-q^{98}-3 q^{96}-3 q^{94}-q^{92}-q^{90}+2 q^{88}+6 q^{86}+9 q^{84}+11 q^{82}+14 q^{80}+11 q^{78}+9 q^{76}+3 q^{74}-4 q^{72}-12 q^{70}-18 q^{68}-24 q^{66}-27 q^{64}-27 q^{62}-24 q^{60}-17 q^{58}-11 q^{56}+7 q^{52}+14 q^{50}+19 q^{48}+22 q^{46}+19 q^{44}+19 q^{42}+14 q^{40}+10 q^{38}+6 q^{36}+4 q^{34}+q^{32}+q^{30}}
|
1,0,0,0
|
|
G2 Invariants.
Weight
|
Invariant
|
0,1
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{240}-q^{198}-q^{192}+q^{178}+q^{176}+q^{172}+2 q^{170}+q^{168}+q^{166}+q^{164}+q^{162}+2 q^{160}+q^{158}+q^{154}+q^{152}-q^{148}-q^{146}-q^{144}-q^{142}-2 q^{140}-3 q^{138}-2 q^{136}-2 q^{134}-3 q^{132}-4 q^{130}-4 q^{128}-3 q^{126}-3 q^{124}-4 q^{122}-4 q^{120}-3 q^{118}-2 q^{116}-2 q^{114}-3 q^{112}-2 q^{110}+q^{102}+q^{100}+2 q^{98}+3 q^{96}+2 q^{94}+2 q^{92}+4 q^{90}+3 q^{88}+3 q^{86}+4 q^{84}+3 q^{82}+3 q^{80}+4 q^{78}+2 q^{76}+2 q^{74}+3 q^{72}+2 q^{70}+q^{68}+2 q^{66}+q^{64}+q^{62}+q^{60}+q^{54}}
|
1,0
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{120}-q^{100}-q^{98}-q^{92}-q^{90}-q^{88}-q^{82}-q^{80}-q^{78}-q^{72}+q^{58}+q^{56}+q^{52}+2 q^{50}+q^{48}+q^{46}+q^{44}+q^{42}+2 q^{40}+q^{38}+q^{34}+q^{32}+q^{30}}
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+ t^{-2} -t- t^{-1} +1}
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+3 z^2+1}
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-7} + q^{-6} - q^{-5} + q^{-4} + q^{-2} }
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^9 z+a^8 z^2+a^7 z^3-a^7 z+a^6 z^4-3 a^6 z^2+2 a^6+a^5 z^3-2 a^5 z+a^4 z^4-4 a^4 z^2+3 a^4}
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{10_132,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}}
):
{10_132,}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+ t^{-2} -t- t^{-1} +1}
, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-7} + q^{-6} - q^{-5} + q^{-4} + q^{-2} }
}
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 12}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -40}
|
|
|
|
|
|
|
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 288}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 800}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2088}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 312}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{41151}{10}}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2494}{15}}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{7634}{5}}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{43}{2}}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1951}{10}}
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j}
are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi}
(fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j}
, alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r}
). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1}
or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=}
-4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-5 | -4 | -3 | -2 | -1 | 0 | χ |
-3 | | | | | | 1 | 1 |
-5 | | | | | | 1 | 1 |
-7 | | | | 1 | | | 1 |
-9 | | | | | | | 0 |
-11 | | 1 | 1 | | | | 0 |
-13 | | | | | | | 0 |
-15 | 1 | | | | | | -1 |
|
Integral Khovanov Homology
(db, data source)
|
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-5}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-3}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
|
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-4}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-3}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
|
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-1}
|
|
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
|
|
The Coloured Jones Polynomials
The Coloured Jones Polynomials (in the
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n+1}
-dimensional representation of
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle sl(2)}
)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n}
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n}
|
2
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} + q^{-7} - q^{-9} + q^{-10} - q^{-12} + q^{-13} -2 q^{-15} + q^{-16} - q^{-18} + q^{-19} }
|
3
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} + q^{-10} - q^{-13} + q^{-14} - q^{-17} + q^{-18} - q^{-21} - q^{-25} + q^{-27} - q^{-29} + q^{-31} + q^{-35} - q^{-36} }
|
4
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-8} + q^{-13} - q^{-17} + q^{-18} - q^{-22} + q^{-23} - q^{-27} + q^{-28} - q^{-29} - q^{-32} + q^{-33} - q^{-34} + q^{-36} - q^{-37} + q^{-38} - q^{-39} + q^{-41} - q^{-42} + q^{-43} - q^{-44} + q^{-45} + q^{-46} - q^{-47} + q^{-48} - q^{-49} + q^{-51} - q^{-52} + q^{-53} - q^{-54} - q^{-57} + q^{-58} }
|
5
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} + q^{-16} - q^{-21} + q^{-22} - q^{-27} + q^{-28} - q^{-33} + q^{-34} - q^{-36} - q^{-39} + q^{-40} - q^{-42} + q^{-46} - q^{-48} + q^{-52} - q^{-54} + q^{-57} + q^{-58} - q^{-60} + q^{-63} - q^{-66} + q^{-69} - q^{-72} - q^{-73} + q^{-75} - q^{-79} + q^{-81} + q^{-84} - q^{-85} }
|
6
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-12} + q^{-19} - q^{-25} + q^{-26} - q^{-32} + q^{-33} - q^{-39} + q^{-40} - q^{-43} - q^{-46} + q^{-47} - q^{-50} - q^{-53} +2 q^{-54} - q^{-57} - q^{-60} +2 q^{-61} - q^{-64} - q^{-67} +2 q^{-68} + q^{-69} - q^{-71} - q^{-74} +2 q^{-75} + q^{-76} -2 q^{-78} - q^{-81} +2 q^{-82} + q^{-83} -2 q^{-85} - q^{-88} +2 q^{-89} -2 q^{-92} - q^{-95} +2 q^{-96} + q^{-97} -2 q^{-99} - q^{-102} +2 q^{-103} + q^{-104} - q^{-106} - q^{-109} +2 q^{-110} - q^{-113} - q^{-116} + q^{-117} }
|
7
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-14} + q^{-22} - q^{-29} + q^{-30} - q^{-37} + q^{-38} - q^{-45} + q^{-46} - q^{-50} - q^{-53} + q^{-54} - q^{-58} - q^{-61} + q^{-62} + q^{-63} - q^{-66} - q^{-69} + q^{-70} + q^{-71} - q^{-74} - q^{-77} + q^{-78} + q^{-79} + q^{-81} - q^{-82} - q^{-85} + q^{-86} + q^{-87} + q^{-89} - q^{-90} - q^{-92} - q^{-93} + q^{-94} + q^{-95} + q^{-97} - q^{-98} - q^{-100} - q^{-101} + q^{-102} + q^{-103} + q^{-105} - q^{-106} - q^{-107} - q^{-108} - q^{-109} + q^{-110} + q^{-111} + q^{-113} - q^{-114} - q^{-115} - q^{-117} + q^{-118} + q^{-119} + q^{-121} - q^{-122} - q^{-123} - q^{-125} + q^{-126} + q^{-127} + q^{-128} + q^{-129} - q^{-130} - q^{-131} - q^{-133} + q^{-134} + q^{-136} + q^{-137} - q^{-138} - q^{-139} - q^{-141} + q^{-142} + q^{-145} - q^{-146} - q^{-147} + q^{-150} + q^{-153} - q^{-154} }
|