K11n116 is not -colourable for any . See The Determinant and the Signature.
Knot presentations
Planar diagram presentation
|
X4251 X10,3,11,4 X5,14,6,15 X7,19,8,18 X9,17,10,16 X2,11,3,12 X20,13,21,14 X15,22,16,1 X17,9,18,8 X12,19,13,20 X21,7,22,6
|
Gauss code
|
1, -6, 2, -1, -3, 11, -4, 9, -5, -2, 6, -10, 7, 3, -8, 5, -9, 4, 10, -7, -11, 8
|
Dowker-Thistlethwaite code
|
4 10 -14 -18 -16 2 20 -22 -8 12 -6
|
Four dimensional invariants
Polynomial invariants
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["K11n116"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{K11n49,}
Same Jones Polynomial (up to mirroring, ):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["K11n116"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n116. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ |
7 | | | | | | | | | | | 1 | 1 |
5 | | | | | | | | | | | | 0 |
3 | | | | | | | | | 1 | 1 | | 0 |
1 | | | | | | | 2 | 1 | | | | 1 |
-1 | | | | | | | 1 | 1 | | | | 0 |
-3 | | | | | 1 | 2 | 1 | | | | | 0 |
-5 | | | | 1 | | | | | | | | -1 |
-7 | | | | 1 | 1 | | | | | | | 0 |
-9 | | 1 | 1 | | | | | | | | | 0 |
-11 | | | | | | | | | | | | 0 |
-13 | 1 | | | | | | | | | | | 1 |
|