K11n49 is not [math]\displaystyle{ k }[/math]-colourable for any [math]\displaystyle{ k }[/math]. See The Determinant and the Signature.
Knot presentations
| Planar diagram presentation
|
X4251 X8394 X5,12,6,13 X7,17,8,16 X2,9,3,10 X11,19,12,18 X13,22,14,1 X15,20,16,21 X17,11,18,10 X19,7,20,6 X21,14,22,15
|
| Gauss code
|
1, -5, 2, -1, -3, 10, -4, -2, 5, 9, -6, 3, -7, 11, -8, 4, -9, 6, -10, 8, -11, 7
|
| Dowker-Thistlethwaite code
|
4 8 -12 -16 2 -18 -22 -20 -10 -6 -14
|
Four dimensional invariants
Polynomial invariants
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["K11n49"];
|
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^2+3- t^{-2} }[/math]
|
Out[5]=
|
[math]\displaystyle{ -z^4-4 z^2+1 }[/math]
|
In[6]:=
|
Alexander[K, 2][t]
|
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math]
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^4-q^3+q^2-q+1- q^{-2} + q^{-3} - q^{-4} + q^{-5} }[/math]
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^2 a^4+2 a^4-z^4 a^2-4 z^2 a^2-3 a^2+2-z^2 a^{-2} - a^{-2} + a^{-4} }[/math]
|
In[10]:=
|
Kauffman[K][a, z]
|
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^3 z^9+a z^9+a^4 z^8+2 a^2 z^8+z^8-7 a^3 z^7-7 a z^7-7 a^4 z^6-14 a^2 z^6-7 z^6+15 a^3 z^5+14 a z^5+z^5 a^{-3} +15 a^4 z^4+28 a^2 z^4+z^4 a^{-2} +z^4 a^{-4} +13 z^4-12 a^3 z^3-10 a z^3-z^3 a^{-1} -3 z^3 a^{-3} -11 a^4 z^2-18 a^2 z^2-3 z^2 a^{-2} -3 z^2 a^{-4} -7 z^2+3 a^3 z+3 a z+z a^{-1} +z a^{-3} +2 a^4+3 a^2+ a^{-2} + a^{-4} +2 }[/math]
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{K11n116,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["K11n49"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^2+3- t^{-2} }[/math], [math]\displaystyle{ q^4-q^3+q^2-q+1- q^{-2} + q^{-3} - q^{-4} + q^{-5} }[/math] }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
| V2,1 through V6,9:
|
| V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
| [math]\displaystyle{ -16 }[/math]
|
[math]\displaystyle{ 8 }[/math]
|
[math]\displaystyle{ 128 }[/math]
|
[math]\displaystyle{ \frac{520}{3} }[/math]
|
[math]\displaystyle{ \frac{224}{3} }[/math]
|
[math]\displaystyle{ -128 }[/math]
|
[math]\displaystyle{ -\frac{688}{3} }[/math]
|
[math]\displaystyle{ -\frac{160}{3} }[/math]
|
[math]\displaystyle{ -56 }[/math]
|
[math]\displaystyle{ -\frac{2048}{3} }[/math]
|
[math]\displaystyle{ 32 }[/math]
|
[math]\displaystyle{ -\frac{8320}{3} }[/math]
|
[math]\displaystyle{ -\frac{3584}{3} }[/math]
|
[math]\displaystyle{ -\frac{34862}{15} }[/math]
|
[math]\displaystyle{ \frac{2576}{5} }[/math]
|
[math]\displaystyle{ -\frac{102848}{45} }[/math]
|
[math]\displaystyle{ \frac{2942}{9} }[/math]
|
[math]\displaystyle{ -\frac{7982}{15} }[/math]
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11n49. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ |
| 9 | | | | | | | | | | | 1 | 1 |
| 7 | | | | | | | | | | | | 0 |
| 5 | | | | | | | | | 1 | 1 | | 0 |
| 3 | | | | | | | 1 | 1 | | | | 0 |
| 1 | | | | | | | 1 | 1 | | | | 0 |
| -1 | | | | | 1 | 2 | 2 | | | | | 1 |
| -3 | | | | 1 | | | | | | | | -1 |
| -5 | | | | 1 | 1 | | | | | | | 0 |
| -7 | | 1 | 1 | | | | | | | | | 0 |
| -9 | | | | | | | | | | | | 0 |
| -11 | 1 | | | | | | | | | | | 1 |
|
| Integral Khovanov Homology
(db, data source)
|
|
| [math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math]
|
[math]\displaystyle{ i=-1 }[/math]
|
[math]\displaystyle{ i=1 }[/math]
|
[math]\displaystyle{ i=3 }[/math]
|
| [math]\displaystyle{ r=-6 }[/math]
|
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
| [math]\displaystyle{ r=-5 }[/math]
|
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
| [math]\displaystyle{ r=-4 }[/math]
|
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
| [math]\displaystyle{ r=-3 }[/math]
|
|
[math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
| [math]\displaystyle{ r=-2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
| [math]\displaystyle{ r=-1 }[/math]
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z}^{2} }[/math]
|
|
| [math]\displaystyle{ r=0 }[/math]
|
[math]\displaystyle{ {\mathbb Z}^{2} }[/math]
|
[math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
| [math]\displaystyle{ r=1 }[/math]
|
[math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
| [math]\displaystyle{ r=2 }[/math]
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
| [math]\displaystyle{ r=3 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
|
| [math]\displaystyle{ r=4 }[/math]
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
|