K11n49 is not
-colourable for any
. See The Determinant and the Signature.
Knot presentations
Planar diagram presentation
|
X4251 X8394 X5,12,6,13 X7,17,8,16 X2,9,3,10 X11,19,12,18 X13,22,14,1 X15,20,16,21 X17,11,18,10 X19,7,20,6 X21,14,22,15
|
Gauss code
|
1, -5, 2, -1, -3, 10, -4, -2, 5, 9, -6, 3, -7, 11, -8, 4, -9, 6, -10, 8, -11, 7
|
Dowker-Thistlethwaite code
|
4 8 -12 -16 2 -18 -22 -20 -10 -6 -14
|
Four dimensional invariants
Polynomial invariants
Alexander polynomial |
![{\displaystyle -t^{2}+3-t^{-2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf50cce9373ba407f9f2b1cffd8fe60653e47c11) |
Conway polynomial |
![{\displaystyle -z^{4}-4z^{2}+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8fef5c8e725a89471ed6f680063b9a587f18412) |
2nd Alexander ideal (db, data sources) |
![{\displaystyle \left\{2,t^{2}+t+1\right\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07849af6abb8bfeca48fd15c388feb618754ca61) |
Determinant and Signature |
{ 1, 0 } |
Jones polynomial |
![{\displaystyle q^{4}-q^{3}+q^{2}-q+1-q^{-2}+q^{-3}-q^{-4}+q^{-5}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a0529d11aada0b16943b0d036d5a1d026a2be3a) |
HOMFLY-PT polynomial (db, data sources) |
![{\displaystyle z^{2}a^{4}+2a^{4}-z^{4}a^{2}-4z^{2}a^{2}-3a^{2}+2-z^{2}a^{-2}-a^{-2}+a^{-4}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0bbfec7d3a5bf2ca1c918937dba6ef2d98379cc5) |
Kauffman polynomial (db, data sources) |
![{\displaystyle a^{3}z^{9}+az^{9}+a^{4}z^{8}+2a^{2}z^{8}+z^{8}-7a^{3}z^{7}-7az^{7}-7a^{4}z^{6}-14a^{2}z^{6}-7z^{6}+15a^{3}z^{5}+14az^{5}+z^{5}a^{-3}+15a^{4}z^{4}+28a^{2}z^{4}+z^{4}a^{-2}+z^{4}a^{-4}+13z^{4}-12a^{3}z^{3}-10az^{3}-z^{3}a^{-1}-3z^{3}a^{-3}-11a^{4}z^{2}-18a^{2}z^{2}-3z^{2}a^{-2}-3z^{2}a^{-4}-7z^{2}+3a^{3}z+3az+za^{-1}+za^{-3}+2a^{4}+3a^{2}+a^{-2}+a^{-4}+2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f39289bc3e874eeac4e7c4b316f8ce0b12b5856a) |
The A2 invariant |
Data:K11n49/QuantumInvariant/A2/1,0 |
The G2 invariant |
Data:K11n49/QuantumInvariant/G2/1,0 |
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["K11n49"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{K11n116,}
Same Jones Polynomial (up to mirroring,
):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["K11n49"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n49. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ |
9 | | | | | | | | | | | 1 | 1 |
7 | | | | | | | | | | | | 0 |
5 | | | | | | | | | 1 | 1 | | 0 |
3 | | | | | | | 1 | 1 | | | | 0 |
1 | | | | | | | 1 | 1 | | | | 0 |
-1 | | | | | 1 | 2 | 2 | | | | | 1 |
-3 | | | | 1 | | | | | | | | -1 |
-5 | | | | 1 | 1 | | | | | | | 0 |
-7 | | 1 | 1 | | | | | | | | | 0 |
-9 | | | | | | | | | | | | 0 |
-11 | 1 | | | | | | | | | | | 1 |
|