K11a154

From Knot Atlas
Revision as of 11:58, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a153.gif

K11a153

K11a155.gif

K11a155

K11a154.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a154 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X18,6,19,5 X12,8,13,7 X2,10,3,9 X8,12,9,11 X22,13,1,14 X20,15,21,16 X6,18,7,17 X16,19,17,20 X14,21,15,22
Gauss code 1, -5, 2, -1, 3, -9, 4, -6, 5, -2, 6, -4, 7, -11, 8, -10, 9, -3, 10, -8, 11, -7
Dowker-Thistlethwaite code 4 10 18 12 2 8 22 20 6 16 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a154 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a154's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 67, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a154/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a154/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_30,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (1, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a154. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          1 1
13         31 -2
11        41  3
9       53   -2
7      64    2
5     45     1
3    56      -1
1   35       2
-1  14        -3
-3 13         2
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a153.gif

K11a153

K11a155.gif

K11a155